【題目】自平面上一點(diǎn)O引兩條射線OA,OB,P在OA上運(yùn)動(dòng),Q在OB上運(yùn)動(dòng)且保持| |為定值2 (P,Q不與O重合).已知∠AOB=120°,
(I)PQ的中點(diǎn)M的軌跡是的一部分(不需寫具體方程);
(II)N是線段PQ上任﹣點(diǎn),若|OM|=1,則 的取值范圍是 .
【答案】橢圓;[1﹣ ,1+ ]
【解析】解:(I)以O(shè)B為x軸,過O垂直于OB的直線為y軸,|OQ|=a,|OP|=b,則P(﹣ , b),Q(a,0),
∴M( , b),
設(shè)M(x,y),則x= ,y= b,
∴a=2x+ y,b= y
由余弦定理可得a2+b2+ab=8,
∴3x2+4 xy+7y2=6,
∴PQ的中點(diǎn)M的軌跡是橢圓的一部分;
(II)∵| |為定值2 ,|OM|=1,
∴a2+b2=6,
∵a2+b2+ab=8,
∴ab=2,
∴a= ,b= ,
∴P(﹣ , ),Q( ,0),M( , ),
∴ =1﹣ , =1+ , =1
∴ 的取值范圍是[1﹣ ,1+ ].
所以答案是:橢圓;[1﹣ ,1+ ].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.
(1)指出程序框圖中的錯(cuò)誤之處并寫出正確的算法步驟.
(2)重新繪制程序框圖,并回答下面提出的問題.
①要使輸出的值為7,則輸入的x的值應(yīng)為多少?
②要使輸出的值為正數(shù),則輸入的x應(yīng)滿足什么條件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),P為雙曲線 ﹣y2=1(a>0)上一點(diǎn),過P作兩條漸近線的平行線交點(diǎn)分別為A,B,若平行四邊形OAPB的面積為 ,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點(diǎn),且直線l與圓O:x2+y2= 相切于點(diǎn)W(O為坐標(biāo)原點(diǎn)).
(1)證明:OE⊥OF;
(2)設(shè)λ= ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,在同一個(gè)坐標(biāo)系中,及的部分圖象如圖所示,則( ).
A. 當(dāng)時(shí),取得最大值 B. 當(dāng)時(shí),取得最大值
C. 當(dāng)時(shí),取得最小值 D. 當(dāng)時(shí),取得最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約于下午1:00~2:00之間到某車站乘公共汽車外出,他們到達(dá)車站的時(shí)間是隨機(jī)的.設(shè)在下午1:00~2:00之間該車站有四班公共汽車開出,開車時(shí)間分別是1:15,1:30,1:45,2:00.求他們在下述情況下乘同一班車的概率:
(1)約定見車就乘;
(2)約定最多等一班車.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+ax+b,a,b∈R.
(1)若2a+b=4,證明:|f(x)|在區(qū)間[0,4]上的最大值M(a)≥12;
(2)存在實(shí)數(shù)a,使得當(dāng)x∈[0,b]時(shí),1≤f(x)≤10恒成立,求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右準(zhǔn)線方程為,又離心率為,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,點(diǎn)為橢圓上異于任意一點(diǎn).
(1)求橢圓的方程;
(2)若直線與軸交于點(diǎn),直線與軸交于點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1的離心率e= ,動(dòng)點(diǎn)P在橢圓C上,點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動(dòng)點(diǎn)P的切線l交橢圓C2于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試證明當(dāng)切線l變化時(shí)|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com