分析 (1)利用遞推關(guān)系、等差數(shù)列的定義即可證明;
(2)利用數(shù)列的單調(diào)性與“裂項求和”即可證明.
解答 (1)證明:∵Sn=$\frac{{{a_n}({a_n}+1)}}{2}$,n∈N*.
∴當(dāng)n=1時,a1=S1=$\frac{{a}_{1}({a}_{1}+1)}{2}$ (an>0),∴a1=1.
當(dāng)n≥2時,由an=Sn-Sn-1=$\frac{{a}_{n}({a}_{n}+1)}{2}$-$\frac{{a}_{n-1}({a}_{n-1}+1)}{2}$.
化為(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,
∴an-an-1=1(n≥2).
∴數(shù)列{an}是以1為首項,以1為公差的等差數(shù)列.
(2)證明:bn=${a_n}^2$=$\frac{1}{{n}^{2}}$.
當(dāng)n=1時,b1=1<$\frac{7}{4}$;
當(dāng)n=2時,b1+b2=1+$\frac{1}{4}$=$\frac{5}{4}$<$\frac{7}{4}$;
當(dāng)n≥3時,bn=$\frac{1}{{n}^{2}}$<$\frac{1}{(n-1)n}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
此時Tn=1+$\frac{1}{4}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+$\frac{1}{4}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n-1)}$=$\frac{5}{4}$+$\frac{1}{2}$-$\frac{1}{n}$=$\frac{7}{4}$-$\frac{1}{n}$<$\frac{7}{4}$,
∴Tn<$\frac{7}{4}$.
又Tn≥T1=1,
∴$1≤{T_n}<\frac{7}{4}$.
點評 本題考查了遞推關(guān)系、等差數(shù)列的定義、數(shù)列的單調(diào)性與“裂項求和”、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4] | B. | [0,2)U(2,4) | C. | (0,2)U(2,4) | D. | [0,2)U(2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\frac{2}{3}$ | D. | $-\frac{11}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (0,3) | C. | (-1,1) | D. | (0,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com