過點且和拋物線相切的直線方程為                  .

試題分析:當(dāng)直線的斜率不存在時,過點的直線為,此時顯然滿足要求;當(dāng)直線的斜率存在時,設(shè)的方程:,聯(lián)立方程,消,由所求直線與拋物線相切,可知,解得,此時,故所求的直線方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
(1)求橢圓的方程;
(2)求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構(gòu)成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂在坐標(biāo)原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設(shè)線段的中垂線與軸交于點 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點,點在直線上運動,過點垂直的直線和線段的垂直平分線相交于點
(1)求動點的軌跡的方程;
(2)過(1)中的軌跡上的定點作兩條直線分別與軌跡相交于,兩點.試探究:當(dāng)直線,的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓E的中心是原點O,其右焦點為F(2,0),過x軸上一點A(3,0)作直線與橢圓E相交于P,Q兩點,且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點P且平行于y軸的直線與橢圓E相交于另一點M,試問M,F,Q是否共線,若共線請證明;反之說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左右焦點分別為為雙曲線的中心,是雙曲線右支上的點,的內(nèi)切圓的圓心為,且圓軸相切于點,過作直線的垂線,垂足為,若為雙曲線的離心率,則(   )
A.B.
C.D.關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊答案