已知函數(shù)f(x)=3+ax+2(a>0,且a≠1)的圖象必過定點(diǎn)P,則P點(diǎn)的坐標(biāo)為
(-2,4)
(-2,4)
分析:根據(jù)指數(shù)函數(shù)的性質(zhì),易得指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象恒過(0,1)點(diǎn),再根據(jù)函數(shù)圖象的平移變換法則,求出平移量,進(jìn)而可以得到函數(shù)圖象平移后恒過的點(diǎn)P的坐標(biāo).
解答:解:由指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象恒過(0,1)點(diǎn)
而要得到函數(shù)y=3+ax+2(a>0,a≠1)的圖象,
可將指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象向左平移2個(gè)單位,再向上平移3個(gè)單位.
則(0,1)點(diǎn)平移后得到(-2,4)點(diǎn).
點(diǎn)P的坐標(biāo)是(-2,4).
故答案為:(-2,4).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)函數(shù)y=4+ax-1(a>0,a≠1)的解析式,結(jié)合函數(shù)圖象平移變換法則,求出平移量是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3•2x-1,則當(dāng)x∈N時(shí),數(shù)列{f(n+1)-f(n)}(  )
A、是等比數(shù)列B、是等差數(shù)列C、從第2項(xiàng)起是等比數(shù)列D、是常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x|x<a}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]•g(x)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案