【題目】有一種大型商品,、兩地都有出售,且價(jià)格相同,現(xiàn)地的居民從、兩地之一購得商品后回運(yùn)的運(yùn)費(fèi)是:地每公里的運(yùn)費(fèi)是地運(yùn)費(fèi)的倍,已知、兩地相距,居民選擇或地購買這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低.
(1)求地的居民選擇地或地購物總費(fèi)用相等時(shí),點(diǎn)所在曲線的形狀;
(2)指出上述曲線內(nèi)、曲線外的居民應(yīng)如何選擇購貨地點(diǎn).
【答案】(1)點(diǎn)所在曲線的形狀是圓;(2)答案不唯一,具體見解析.
【解析】
(1)以所在直線為軸,線段的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,設(shè)點(diǎn),然后根據(jù)題意建立、的方程,即可得出動(dòng)點(diǎn)的軌跡方程,即可判斷出點(diǎn)所在曲線的形狀;
(2)先考慮居民在地購貨費(fèi)用較低,得出,由此得出,可得出圓內(nèi)的居民從地購貨費(fèi)用較低,同理得出圓外的居民從地購貨費(fèi)用較低.
(1)以所在直線為軸,線段的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,則、,
設(shè)地的坐標(biāo)為,且地到、兩地購物的運(yùn)費(fèi)分別是、(元/公里),
當(dāng)地到、兩地購物總費(fèi)用相等時(shí),價(jià)格地運(yùn)費(fèi)價(jià)格地運(yùn)費(fèi),
即,整理得.
故地的居民選擇地或地購物總費(fèi)用相等時(shí),點(diǎn)所在曲線的形狀是圓;
(2)若居民在地購貨費(fèi)用較低時(shí),即:價(jià)格地運(yùn)費(fèi)價(jià)格地運(yùn)費(fèi),
得,化簡得,
所以,此時(shí)點(diǎn)在圓內(nèi),即圓內(nèi)的居民從地購貨費(fèi)用較低.
同理,圓外的居民從地購貨費(fèi)用較低.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若的圖像與直線相切,求
(Ⅱ)若且函數(shù)的零點(diǎn)為,
設(shè)函數(shù)試討論函數(shù)的零點(diǎn)個(gè)數(shù).(為自然常數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中是“單曲型直線”的是( )
①; ②y=2; ③; ④.
A.①③ B. ③④ C.②③ D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的方程為,左右焦點(diǎn)分別為,,為短軸的一個(gè)端點(diǎn),且的面積為.設(shè)過原點(diǎn)的直線與橢圓交于兩點(diǎn),為橢圓上異于的一點(diǎn),且直線,的斜率都存在,.
(1)求的值;
(2)設(shè)為橢圓上位于軸上方的一點(diǎn),且軸,、為曲線上不同于的兩點(diǎn),且,設(shè)直線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設(shè)圓求過(2,0)的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)(0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點(diǎn),使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點(diǎn)點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且,當(dāng)時(shí),,則在區(qū)間內(nèi)關(guān)于的方程解得個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個(gè)結(jié)論:
①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com