【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.
【答案】
(1)解:橢圓 =1(a>b>0)的焦距為2c,
由CF1⊥x軸.則C(﹣c,y0),y0>0,
由C在橢圓上,則y0= ,則C(﹣c, ),
由OC∥AB,則﹣ =kOC=kAB=﹣ ,則b=c,
e= = = ,
e的值
(2)解:設(shè)D(x1,y1),設(shè) =λ ,
C(﹣c, ),F(xiàn)2(c,0),
故 =(2c,﹣ ), =(x1﹣c,y1),
由 =λ ,則2c=λ(x1﹣c),﹣ =λy1,則D( c,﹣ ),
由點D在橢圓上,則( )2e2+ =1,整理得:(λ2+4λ+3)e2=λ2﹣1,
由λ>0,e2= = =1﹣ ,
由 ≤e≤ ,則 ≤e2≤ ,則 ≤1﹣ ≤ ,
解得: ≤λ≤5,
∴ 的取值范圍[ ,5]
【解析】(1)由CF1⊥x軸.則C(﹣c, ),根據(jù)直線的斜率相等,即可求得b=c,利用離心率公式即可求得e的值;(2)根據(jù)向量的坐標(biāo)運算,求得D點坐標(biāo),代入橢圓方程,求得e2= =1﹣ ,由離心率的取值范圍,即可求得λ的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩名籃球運動員的季后賽10場得分可用莖葉圖表示如圖:
(1)某同學(xué)不小心把莖葉圖中的一個數(shù)字弄污了,看不清了,在如圖所示的莖葉圖中用m表示,若甲運動員成績的中位數(shù)是33,求m的值;
(2)估計乙運動員在這次季后賽比賽中得分落在[20,40]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運動會,其中三級跳遠(yuǎn)的成績在8.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種, 方案一:每滿200元減50元:
方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機(jī)摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 半價 | 7折 | 8折 | 原價 |
(Ⅰ)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;
(Ⅱ)若某顧客購物金額為320元,用所學(xué)概率知識比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=8x的焦點為F,準(zhǔn)線l與x軸的交點為M,過點M的直線l′與拋物線C的交點為P,Q,延長PF交拋物線C于點A,延長QF交拋物線C于點B,若 + =22,則直線l′的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若將f(x)的圖象向左平移 個單位后所得函數(shù)的圖象關(guān)于原點對稱,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時,不等式f(x)≤ex恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+φ),且f(0)=1,f′(0)<0,則函數(shù) 圖象的一條對稱軸的方程為( )
A.x=0
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com