6.函數(shù)y=ln($\frac{1}{x}$-1)的定義域為(  )
A.(-∞,0)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\frac{1}{x}$-1>0,即$\frac{1}{x}$>1,則0<x<1,
即函數(shù)的定義域為(0,1),
故選:B.

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為$\frac{\sqrt{5}}{10}$.則E的離心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點到直線x-y+3$\sqrt{2}$=0的距離為5,且橢圓的一個長軸端點與一個短軸端點間的距離為$\sqrt{10}$.
(1)求橢圓C的方程;
(2)如圖,連接橢圓短軸端點A與橢圓上不同于A的兩點M,N,與以橢圓短軸為直徑的圓分別交于P,Q兩點,且PQ恰好經(jīng)過圓心O,求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,F(xiàn)為該橢圓的右焦點,若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M(x0,y0).
(1)求證:$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{3}$=1;
(2)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)=2msinx-2cos2x+$\frac{1}{2}$m2-4m+3,m∈(-∞,2]的最小值為m2+1,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在三個數(shù)$\frac{1}{2},{2^{-\frac{1}{2}}}.{log_3}$2中,最小的數(shù)是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在單位正方形網(wǎng)格中的位置如圖所示,則$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下面幾個數(shù)中:①30.4;②$\frac{1+tan15°}{1-tan15°}$;③log23•log98;④50.2;⑤3${\;}^{\frac{1}{3}}$,最大的是②,最小的是④(請?zhí)顚憣?yīng)數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若a,b都是不等于1的正數(shù),則“l(fā)oga2>logb2”是“2a>2b”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

同步練習冊答案