如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.

(Ⅰ)求曲線C的方程;

(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足,求證:對于任意一條切線l總有

答案:
解析:

  (Ⅰ)由題意,,

  ∴Q點軌跡是以A、B為焦點的橢圓,且,

  ∴曲線C的軌跡方程是  

  (Ⅱ)先考慮切線的斜率存在的情形.設切線,則

  由與⊙O相切得 、佟 7分

  由,消去得,,

  設,則由韋達定理得

  ,  9分

  

  

    ②  10分

  由于其中一條切線滿足,對此

結(jié)合①式可得  12分

  于是,對于任意一條切線,總有,進而

  故總有  14分

  最后考慮兩種特殊情況:(1)當滿足的那條切線斜率不存在時,切線方程為

  代入橢圓方程可得交點的縱坐標,因,故,得到,同上可得:任意一條切線均滿足;(2)當滿足的那條切線斜率存在時,,,對于斜率不存在的切線也有

  綜上所述,命題成立  15分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設∠BOD=θ,0≤θ<2π
(Ⅰ)當∠BOD=
π6
,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省期中題 題型:解答題

如圖,已知點A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點C在直線l:x-2y+2=0上,
(Ⅰ)求AB邊上的高CE所在直線的方程;
(Ⅱ)求△ABC的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省泉州市高三質(zhì)量檢測數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設∠BOD=θ,0≤θ<2π
(Ⅰ)當,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案