已知橢圓離心率為數(shù)學(xué)公式,一個(gè)短軸頂點(diǎn)是(0,-8),則此橢圓的標(biāo)準(zhǔn)方程為________.

+=1
分析:利用橢圓的性質(zhì)即可求得此橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng),從而求得其標(biāo)準(zhǔn)方程.
解答:∵橢圓離心率為,一個(gè)短軸頂點(diǎn)是(0,-8),
∴b=8,e==,
=
又a2=b2+c2=64+c2,
∴a2=100,b2=64.
∴此橢圓的標(biāo)準(zhǔn)方程為+=1,
故答案為:為+=1.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,求得此橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng)是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,過橢圓的右焦點(diǎn)且與x軸垂直的直線與橢圓交于P、Q兩點(diǎn),橢圓的右準(zhǔn)線與x軸交于點(diǎn)M,若△PQM為正三角形,則橢圓的離心率等于
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),離心率e=
2
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過橢圓的左焦點(diǎn)F1且垂直于長(zhǎng)軸的直線交橢圓于M、N兩點(diǎn),且|MN|=
2

(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于P,Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ.試探究點(diǎn)O到直線l的距離是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川成都外國(guó)語(yǔ)學(xué)校高三下二月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓的方程為,是它的一條傾斜角為的弦,且是弦的中點(diǎn),則橢圓的離心率為_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;

(2)設(shè)O為坐標(biāo)原點(diǎn),上的點(diǎn),為橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于兩點(diǎn).

①若,求圓的方程;

②若l上的動(dòng)點(diǎn),求證:點(diǎn)在定圓上,并求該定圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省、海門中學(xué)、天一中學(xué)高三聯(lián)考數(shù)學(xué) 題型:解答題

(本小題滿分16分)

已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;

(2)設(shè)O為坐標(biāo)原點(diǎn),上的點(diǎn),為橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于兩點(diǎn).

        ①若,求圓的方程;

②若l上的動(dòng)點(diǎn),求證點(diǎn)在定圓上,并求該定圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案