若a⊥b,a⊥α,則直線b與平面α的位置關(guān)系是(  )
A、平行B、相交
C、在平面內(nèi)D、平行或者在平面內(nèi)
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:當(dāng)b?α?xí)r,滿足條件,當(dāng)b∥α?xí)r,也滿足條件.
解答: 解:∵a⊥b,a⊥α,
當(dāng)b?α?xí)r,滿足條件,
當(dāng)b∥α?xí)r,也滿足條件,
∴直線b與平面α的位置關(guān)系是平行或者在平面內(nèi).
故選:D.
點(diǎn)評:本題考查直線與平面的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的半徑為2,一條弦的長度等于半徑,則這條弦和這條弦所對的劣弧所組成的弓形的面積為(  )
A、
3
-2
3
B、
3
-
3
C、
3
-2
3
D、
3
-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為貫徹落實(shí)《四川省普通高中學(xué)分管理辦法(試行)》,成都某中學(xué)的4名學(xué)生可從本年級開設(shè)的3門課程中選擇,每個(gè)學(xué)生必須且只能選一門,且每門課必須有人選,則不同的選課方案有(  )種.
A、18B、36C、54D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lg
x+1
x-1
,g(x)=ex+
1
ex
,則(  )
A、f(x)是奇函數(shù),g(x)是偶函數(shù)
B、f(x)與g(x)都是奇函數(shù)
C、f(x)是偶函數(shù),g(x)是奇函數(shù)
D、f(x)與g(x)都是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
2
-
1
x2
n的二項(xiàng)展開式中,只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中常數(shù)項(xiàng)是( 。
A、-15
B、15
C、-
15
16
D、
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從21,22,23,…,2n這n個(gè)數(shù)中取m(n,m∈N*,2≤m≤n)個(gè)數(shù)組成遞增的等比數(shù)列,所有可能的遞增等比數(shù)列的個(gè)數(shù)記為φ(n,m),則φ(100,10)=(  )
A、504B、505
C、506D、507

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有( 。
(1)y=x與y=
x2
x
是同一函數(shù)
(2)函數(shù)f(x)=x2-1的零點(diǎn)是(1,0)和(-1,0)
(3)y=
1
x
在其定義域上是減函數(shù)
(4)y=x 
2
3
在其定義域上是奇函數(shù).
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C在y軸上截得的弦為AB,A的坐標(biāo)為(0,5),B的坐標(biāo)為(0,3),且圓心在直線x=2上,若點(diǎn)Q(x,y)是圓C上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的坐標(biāo)為(-1,3).
(1)求圓心C的坐標(biāo)并寫出圓C的方程;
(2)求P與Q的距離的最小值;
(3)當(dāng)直線PQ與圓C相切時(shí),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]上的偶函數(shù)f(x),已知當(dāng)x∈[-1,0]時(shí),f(x)=
1
4x
-
a
2x
(a∈R).
(I)寫出f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案