【題目】如圖,在三棱錐中,平面平面,若的中點.

(1)證明:平面;

(2)求異面直線所成角;

(3)設線段上有一點,當與平面所成角的正弦值為時,求的長.

【答案】(1)證明見解析;(2)(3).

【解析】

(1)先證明平面平面,再證明平面;(2)分別以,,軸,軸,軸的非負半軸,建立空間直角坐標系,利用向量法求異面直線所成角;(3)設,,利用向量法得到,解方程即得t的值和的長.

(1)∵,,

,

∵平面平面,

平面平面,

平面,

平面.

(2)∵,,

,,

如圖,分別以,,軸,軸,軸的非負半軸,建立空間直角坐標系,

,,,

,

,

∴異面直線所成角為.

(3)設為平面的法向量,

,

,即,

,,

與平面所成角為,

,

,

,

,

(舍),

的長為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(Ⅰ)若,證明函數(shù)有唯一的極小值點;

(Ⅱ)設,記函數(shù)的最大值為M,求使得a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,正方形與梯形所在的平面互相垂直, ,.

1)求證:平面

2)求證:平面平面;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)證明:對任意的,存在唯一的,使

3)設(2)中所確定的關于的函數(shù)為,證明:當時,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, , .

(1)求證:平面平面

(2)已知中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是偶函數(shù),求實數(shù)的值;

2)若函數(shù),關于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

1)當時,判斷函數(shù)在定義域上的單調性;

2)求函數(shù)的極值點;

3)當時,試證明對任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,,是以為底邊的等腰直角三角形.

(1)求證:;

(2)若的垂心,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

同步練習冊答案