分析 (1)利用余弦定理列方程解出;
(2)根據(jù)正弦定理用θ表示出BN,BM,使用和角公式化簡L,根據(jù)θ的范圍和正弦函數(shù)的性質得出L的最大值.
解答 解:(1)設BM=x,則BN=x-4,MN=x+4,
在△MBN中,由余弦定理得MN2=BN2+BM2-2BN•BMcosB,
即(x+4)2=(x-4)2+x2+x(x-4),解得x=10,
∴MN=x+4=14(千米);
(2)∠BMN=60°-θ,
由正弦定理得$\frac{BM}{sinθ}$=$\frac{BN}{sin(60°-θ)}$=$\frac{MN}{sin120°}$=8$\sqrt{3}$,
∴BM=8$\sqrt{3}$sinθ,BN=8$\sqrt{3}$sin(60°-θ),
∴L=BM+BN+MN=8$\sqrt{3}$sinθ+8$\sqrt{3}$sin(60°-θ)+12=12cosθ+4$\sqrt{3}$sinθ+12=8$\sqrt{3}$sin(θ+60°)+12.
∵0<θ<60°,∴60°<θ+60°<120°.
∴當θ+60°=90°時,周長L取得最大值8$\sqrt{3}$+12千米.
點評 本題考查了正余弦定理在解三角形中的應用,三角函數(shù)的恒等變換,正弦函數(shù)的圖象與性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 14+2$\sqrt{3}$ | B. | 12+4$\sqrt{3}$ | C. | 16+4$\sqrt{3}$ | D. | 15+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+$\frac{4}{x}$ | B. | y=sinx+$\frac{4}{sinx}$(0<x<π) | ||
C. | y=ex+4e-x | D. | y=$\sqrt{{x}^{2}+3}$+$\frac{2}{\sqrt{{x}^{2}+3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com