4.執(zhí)行如圖所示的程序框圖,運行相應的程序,輸出的結果是$\frac{8}{5}$.

分析 由已知中的程序語句,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
x=1,y=2,z=3
滿足條件z<12,執(zhí)行循環(huán)體,x=2,y=3,z=5
滿足條件z<12,執(zhí)行循環(huán)體,x=3,y=5,z=8
滿足條件z<12,執(zhí)行循環(huán)體,x=5,y=8,z=13
不滿足條件z<12,退出循環(huán),輸出$\frac{y}{x}$的值為$\frac{8}{5}$.
故答案為:$\frac{8}{5}$.

點評 本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=cos(2x-$\frac{2π}{3}$)+2cos2x+k的最小值為-3
(1)求常數(shù)k的值;
(2)若f(x0)=-$\frac{7}{5}$,x0∈[0,$\frac{π}{4}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學選取若干大學生志愿者,某記者在該大學隨機調查了1000名大學生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作不愿意做志愿者工作合計
男大學生610
女大學生90
合計800
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認為愿意做志愿者工作與性別有關?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知數(shù)列{an}的前n項和為${S_n}=3{n^2}+8n$,{bn}為等差數(shù)列,且b1=4,b3=10,則數(shù)列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n項和Tn=n×2n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AD=DC=$\sqrt{2}$,AB=PA=2$\sqrt{2}$,且E為線段PB上的一動點.
(1)若E為線段PB的中點,求證:CE∥平面PAD;
(2)當直線CE與平面PAC所成角小于$\frac{π}{3}$,求PE長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調遞減的是( 。
A.y=$\frac{1}{x}$B.y=5xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直線$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù))的斜率為(  )
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)是定義在R上的奇函數(shù),且f(1)=1,對于任意的x1,x2∈R(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
(1)解關于x的不等式f(x2-3ax)+f(2a2)<0;
(2)若f(x)≤m2-2am+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案