12.為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作不愿意做志愿者工作合計(jì)
男大學(xué)生610
女大學(xué)生90
合計(jì)800
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

分析 (1)根據(jù)列聯(lián)表中數(shù)量關(guān)系,補(bǔ)全聯(lián)立表即可;
(2)計(jì)算K2的觀測(cè)值k,對(duì)照臨界值即可得出結(jié)論.

解答 解:(1)根據(jù)列聯(lián)表中數(shù)量關(guān)系,補(bǔ)全聯(lián)立表如下;

愿意做志愿者工作不愿意做志愿者工作合計(jì)
男大學(xué)生500110610
女大學(xué)生30090390
合計(jì)8002001000
…(6分)
(2)因?yàn)镵2的觀測(cè)值k=$\frac{1000{×(500×90-110×300)}^{2}}{800×200×610×390}$=$\frac{9000}{2379}$≈3.78<3.841,
∴沒(méi)有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān).(12分)

點(diǎn)評(píng) 本題考查了列聯(lián)表與獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知m>0,n>0,且mn=2,則2m+n的最小值為( 。
A.4B.5C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=3xf'(1)+lnx,則f′(1)=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.根據(jù)如下樣本數(shù)據(jù):
x34567
y4.02.50.5-0.5-2.0
得到的回歸方程為$\stackrel{∧}{y}$=bx+a.若a=8.4,則估計(jì)x,y的變化時(shí),若x每增加1個(gè)單位,則y就( 。
A.增加1.2個(gè)單位B.減少1.5個(gè)單位C.減少2個(gè)單位D.減少1.2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,且<$\overrightarrow{a}$,$\overrightarrow$>=120°,則|$\overrightarrow{a}$+$\overline$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知在三棱柱ABC-A1B1C1中,△ABC為正三角形,AA1⊥平面ABC,且AA1=AB,過(guò)AB做平面α與BC1平行,平面α交平面ACC1A1于直線l,則直線l與BC所成角的余弦值為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{10}$D.$\frac{\sqrt{5}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax-(a+1)lnx-a(a>0)
(1)求f(x)的單調(diào)區(qū)間
(2)當(dāng)$x=\frac{1}{a}+1$時(shí),證明:$ln({\frac{1}{a}+1})>\frac{1}{1+a}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案