若曲線x2-y2=1與曲線(x-1)2+y2=a2(a>0)恰好有三個不同的公共點,則實數(shù)a的取值(范圍)為
 
考點:圓與圓錐曲線的綜合
專題:圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線x2-y2=1與圓(x-1)2+y2=a2恰有三個不同的公共點,可得圓(x-1)2+y2=a2與雙曲線交點為(-1,0),從而可得結(jié)論.
解答: 解:∵雙曲線x2-y2=1與圓(x-1)2+y2=a2(a>0)恰有三個不同的公共點,
∴圓(x-1)2+y2=a2(a>0)與雙曲線左支交點為(-1,0),
∴a=2.
故答案為:2.
點評:本題考查雙曲線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若球的表面積為4π,則球的體積為( 。
A、
1
3
π
B、
4
3
π
C、
8
3
π
D、
32
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是不等式組
y≥0
x-2y≥-1
x+y≤3
表示的平面區(qū)域內(nèi)的任意一點,向量
m
=(1,1),
n
=(2,1),若
OP
m
n
(λ、μ∈R),則μ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a x2-3x+3,當(dāng)x∈[1,3]時,有最小值8,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某聯(lián)歡晚會矩形抽獎活動,舉辦方設(shè)置了甲乙兩種抽獎方案,方案甲的中獎率為
2
3
,中獎可以獲得2分,方案乙的中獎率為
2
5
,中獎可以得3分,未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲,小紅選擇方案乙,記他們的累計得分為X,求X<4的概率;
(2)若小明小紅兩人選擇同一方案抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x<0
0,x=0
g(x),x>0
,且f(x)為奇函數(shù),則g(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|=1,<
a
,
b
>=60°,向量2t
a
+7
b
a
+t
b
夾角為鈍角,求t范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x2-
1
x
5的展開式中,第4項的系數(shù)是(  )
A、∁54
B、-∁54
C、∁53
D、-C53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x
1
2
+x-
1
2
=
7
,求
x+x-1
x2+x-2-3
的值.

查看答案和解析>>

同步練習(xí)冊答案