已知函數(shù)f(x)=
x2+x+1
x2+1
,若f(a)=
2
3
,則f(-a)=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(a)=1+
a
a2+1
=
2
3
,由此利用f(-a)=1-
a
a2+1
,能求出結(jié)果.
解答: 解:∵函數(shù)f(x)=
x2+x+1
x2+1
=1+
x
x2+1
,
∴f(a)=1+
a
a2+1
=
2
3

解得
a
a2+1
=-
1
3
,
∴f(-a)=1-
a
a2+1
=1+
1
3
=
4
3

故答案為:
4
3
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意函數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+b(a、b為常數(shù)).
(1)如果函數(shù)f(x)是區(qū)間[b-2,b]上的偶函數(shù),求a、b的值;
(2)設(shè)函數(shù)g(x)=log2x.
①判斷g(x)在區(qū)間[1,4]上的單調(diào)性,并寫出g(x)在區(qū)間[1,4]上的最小值和最大值;
②閱讀下面題目及解法:
題目:對任意x∈[1,4],2x+m恒大于1,求實數(shù)m的取值范圍.
解:設(shè)h(x)=2x+m,則對任意x∈[1,4],2x+m恒大于1?當x∈[1,4],h(x)min>1.
由h(x)在區(qū)間[1,4]上遞增,知h(x)min=h(1)=2+m>1,所以m>-1.
學習以上題目的解法,試解決下面問題:
當f(x)中的a=4時,若對任意x1、x2∈[1,4],f(x1)恒大于g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-2x+b=0},問同時滿足B是A的真子集,C是A的子集的實數(shù)a,b是否存在?若存在求出a,b所有值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=-
a
x
,若至少存在一個x0∈[1,e],使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
10x-x2-21
+
7x-x2-10
-a存在零點,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=
3
2x-1
在區(qū)間[1,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,1],則函數(shù)f(
x+1
2
)-f(
x-1
2
)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點,CD⊥AB,垂足為D.若AD=2,BC=2
6
,則半圓O的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知定義在實數(shù)集R上的函數(shù)f(x)滿足:
①f(2-x)=f(x);②f(x+2)=f(x-2);③當x1,x2∈[1,3]時,
f(x1)-f(x2)
x1-x2
>0,
則f(2014)、f(2015)、f(2016)滿足( 。
A、f(2014)>f(2015)>f(2016)
B、f(2016)>f(2015)>f(2014)
C、f(2016)=f(2014)>f(2015)
D、f(2016)=f(2014)<f(2015)

查看答案和解析>>

同步練習冊答案