16.復(fù)數(shù)z=$\frac{1+i}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.iB.-iC.1D.-1

分析 利用復(fù)數(shù)除法運算化簡,可得虛部.

解答 解:復(fù)數(shù)z=$\frac{1+i}{i}$=$\frac{i(1+i)}{i•i}$=1-i,
則復(fù)數(shù)z的虛部是-1,
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的除法運算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項和為Sn,a1+a3=$\frac{5}{8}$,S4=$\frac{5}{4}$,則數(shù)列{an}的公比為( 。
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{7}{8}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{27}$=1有共同的漸近線,并且經(jīng)過點A(3,-6$\sqrt{2}$),F(xiàn)1,F(xiàn)2是雙曲線C的左、右焦點,若點P在雙曲線C上,且∠F1PF2=90°,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|等于( 。
A.2$\sqrt{5}$B.$\sqrt{5}$C.2$\sqrt{10}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,棱BB1長為$\sqrt{2}$,則二面角B1-AC-B的大小是45度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)復(fù)數(shù)z滿足(3-4i)z=|4+3i|(i是虛數(shù)單位),則復(fù)數(shù)z的虛部是( 。
A.4B.4iC.$\frac{4}{5}$iD.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.3個老師和5個同學(xué)照相,老師不能坐在最左端,任何兩位老師不能相鄰,則不同的坐法種數(shù)是( 。
A.$A_8^8$B.$A_5^5A_3^3$C.$A_5^5A_5^3$D.$A_5^5A_8^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,則復(fù)數(shù)-1-i對應(yīng)的點位于坐標平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,則t=(  )
A.1B.3C.±3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)U=R,已知集合A={x|x≥1},B={x|x>a},且(∁UA)∪B=R,則實數(shù)a的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案