6.設(shè)U=R,已知集合A={x|x≥1},B={x|x>a},且(∁UA)∪B=R,則實數(shù)a的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

分析 根據(jù)集合的定義與運算性質(zhì),進行化簡、運算即可.

解答 解:∵U=R,集合A={x|x≥1}=[1,+∞),
B={x|x>a}=(a,+∞),
∴∁UA=(-∞,1),
又(∁UA)∪B=R,
∴實數(shù)a的取值范圍是(-∞,1).
故選:A.

點評 本題考查了集合的定義與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=$\frac{1+i}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=1,$\overrightarrow$=(3,0),|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調(diào)查,得如下數(shù)據(jù):
組數(shù)分組認(rèn)同人數(shù)認(rèn)同人數(shù)占
本組人數(shù)比
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55)150.3
(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于( 。
A.16B.16或-16C.32D.32或-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.甲、乙兩人同時參加一次數(shù)學(xué)測試,共有10道選擇題,每題均有4個選項,答對得3分,答錯或不答得0分,甲和乙都解答了所有的試題,經(jīng)比較,他們只有1道題的選項不同,如果甲最終的得分為27分,那么乙的所有可能的得分值組成的集合為{24,27,30}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.三棱錐A-BCD中,平面ABC⊥平面BCD,AB=BC=BD,∠ABC=∠DBC=120°,則二面角A-BD-C的平面角的正切值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知復(fù)數(shù)z=$\frac{1+i}{2-2i}$,則|z|=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知奇函數(shù)f(x)的定義域為R,且當(dāng)x>0時,f(x)=x2-3x+2,若函數(shù)y=f(x)-a有2個零點,則實數(shù)a的取值范圍是(-2,-$\frac{1}{4}$)∪($\frac{1}{4}$,2).

查看答案和解析>>

同步練習(xí)冊答案