15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=$\frac{5}{8}$,S4=$\frac{5}{4}$,則數(shù)列{an}的公比為( 。
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{7}{8}$D.1

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1+a3=$\frac{5}{8}$,S4=$\frac{5}{4}$,
∴${a}_{1}(1+{q}^{2})$=$\frac{5}{8}$,${a}_{1}(1+q+{q}^{2}+{q}^{3})$=$\frac{5}{4}$,
解得q=1.
故選:D.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知y=f(x)(x∈R)的導(dǎo)函數(shù)為f′(x).若f(x)-f(-x)=2x3,且當(dāng)x≥0時(shí),f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集是( 。
A.$(-\frac{1}{2},+∞)$B.$(\frac{1}{2},+∞)$C.$(-∞,-\frac{1}{2})$D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校為了了解學(xué)生的數(shù)學(xué)期中考試成績,從中抽取部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名同學(xué)到市里參加數(shù)學(xué)競賽,求這2人的成績均在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知函數(shù)f(x)=2asin(ωx+$\frac{π}{4}$)-2a+b(ω>0),f(x)的最小正周期為π,當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知O為坐標(biāo)原點(diǎn),雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F(-c,0)(c>0),以O(shè)F為直徑的圓交雙曲線C的漸近線于A,B,O三點(diǎn),且($\overrightarrow{AO}$+$\overrightarrow{AF}$)$•\overrightarrow{OF}$=0,若關(guān)于x的方程ax2+bx-c=0的兩個(gè)實(shí)數(shù)根分別為x1和x2,則以|x1|,|x2|,2為邊長的三角形的形狀是( 。
A.鈍角三角形B.直角三角形C.銳角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\frac{3cosα+2sinα}{sinα+cosα}=\frac{4}{5}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則y=loga(x2+2x+5)的最小值為( 。
A.0B.2log32C.2D.log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=2-2cos2(π+x)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=$\frac{1+i}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步練習(xí)冊答案