【題目】已知橢圓C1ab0),橢圓C上的點到焦點距離的最大值為9,最小值為1

1)求橢圓C的標準方程;

2)求橢圓C上的點到直線l4x5y+400的最小距離?

【答案】1.(2

【解析】

(1)根據(jù)題意列出方程組,求出,,,從而求出橢圓的標準方程.

(2)由題可知直線與橢圓不相交,將直線平移,可知其與橢圓相切時,切點到直線的距離最小或最大,據(jù)此可設直線平行于直線,將之與橢圓方程聯(lián)立,進而得解.

(1)因為橢圓C上的點到焦點距離的最大值為9,最小值為1,

所以a+c=9,ac=1,

a=5,c=4,

b2=a2c2=9,

∴橢圓的標準方程為:;

(2)由直線l的方程與橢圓的方程可以知道,直線l與橢圓不相交,

設直線m平行于直線l,則直線m的方程可以寫成4x5y+k=0,

聯(lián)立,整理得25x2+8kx+k2225=0,

令△=0,64k24×25(k2225)=0

解得k1=25k2=25,

∴當k1=25,直線m與橢圓交點到直線l的距離最近,

此時直線m的方程為4x5y+25=0,

直線m與直線l間的距離d,

所以,橢圓C上的點到直線l:4x5y+40=0的最小距離是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=(kx+ex2x,若fx)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 ( 。

A. [ B. ,]

C. [D. [

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問5分,2小問7分

圖,橢圓的左、右焦點分別為的直線交橢圓于兩點,且

1,求橢圓的標準方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a0,且a≠1.命題P:函數(shù)fx)=logax在(0,+∞)上為增函數(shù);命題Q:函數(shù)gx)=x22ax+4有零點.

1)若命題P,Q滿足PQ假,求實數(shù)a的取值范圍;

2)命題S:函數(shù)yfgx))在區(qū)間[2,+∞)上值恒為正數(shù).若命題S為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機構對“使用微信支付”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信支付”的態(tài)度與人的年齡有關;

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1左右焦點為F1,F2直線(1xy0與該橢圓有一個公共點在y軸上,另一個公共點的坐標為(m,1).

1)求橢圓C的方程;

2)設P為橢圓C上任一點,過焦點F1,F2的弦分別為PM,PN,設λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形ABCD中,ABCD,∠BAD90°,ABAD1,CD2,若將△BCD沿著BD折起至△BC'D,使得ADBC'

1)求證:平面C'BD⊥平面ABD;

2)求C'D與平面ABC'所成角的正弦值;

3MBD中點,求二面角MAC'B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線E的極坐標方程為4(ρ2-4sin2θ=(16-ρ2cos2θ,以極軸為x軸的非負半軸,極點O為坐標原點,建立平面直角坐標系.

1)寫出曲線E的直角坐標方程;

2)若點P為曲線E上動點,點M為線段OP的中點,直線l的參數(shù)方程為t為參數(shù)),求點M到直線l的距離的最大值.

查看答案和解析>>

同步練習冊答案