【題目】對于函數(shù),若函數(shù)是增函數(shù),則稱函數(shù)具有性質(zhì)A.
若,求的解析式,并判斷是否具有性質(zhì)A;
判斷命題“減函數(shù)不具有性質(zhì)A”是否真命題,并說明理由;
若函數(shù)具有性質(zhì)A,求實(shí)數(shù)k的取值范圍,并討論此時函數(shù)在區(qū)間上零點(diǎn)的個數(shù).
【答案】(1),具有性質(zhì)A;(2)假命題;(3)詳見解析.
【解析】
由,結(jié)合即可得出解析式,和單調(diào)性,進(jìn)而可得出結(jié)果;
判斷命題“減函數(shù)不具有性質(zhì)A”,為假命題,舉出反例即可,如;
若函數(shù)具有性質(zhì)A,可知 在為增函數(shù),進(jìn)而可求出實(shí)數(shù)k的取值范圍;再令,則在區(qū)間上零點(diǎn)的個數(shù),即是的根的個數(shù),結(jié)合k的取值范圍,即可求出結(jié)果.
解:,,
在R上遞增,可知具有性質(zhì)A;
命題“減函數(shù)不具有性質(zhì)A”,為假命題,比如:,
在R上遞增,具有性質(zhì)A;
若函數(shù)具有性質(zhì)A,
可得
在遞增,可得,解得;
由,可得,即,
可得,時顯然成立;
時,,
由在遞減,且值域為,
時,或1,有三解,3個零點(diǎn);
當(dāng)時,,即,可得,1個零點(diǎn);
當(dāng)時,,t有一解,x兩解,即兩個零點(diǎn);
當(dāng),且時,無解,即x無解,無零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過頂點(diǎn)在原點(diǎn)、對稱軸為軸的拋物線上的點(diǎn)作斜率分別為,的直線,分別交拋物線于,兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;
(2)若,證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系中,射線:,曲線的參數(shù)方程為(為參數(shù)),曲線的方程為;以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.
(Ⅰ)寫出射線的極坐標(biāo)方程以及曲線的普通方程;
(Ⅱ)已知射線與交于,,與交于,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對任意兩個正實(shí)數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級的全體學(xué)生平均分成個小組,且每個小組均有名男生和多名女生.現(xiàn)從各個小組中隨機(jī)抽取一名同學(xué)參加社區(qū)服務(wù)活動,若抽取的名學(xué)生中至少有一名男生的概率為,則( )
A.該班級共有名學(xué)生
B.第一小組的男生甲被抽去參加社區(qū)服務(wù)的概率為
C.抽取的名學(xué)生中男女生數(shù)量相同的概率是
D.設(shè)抽取的名學(xué)生中女生數(shù)量為,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將方格表任意一個角上的小方格表挖去,剩下的圖形稱為“角形”.現(xiàn)在方格表中放置一些兩兩不重疊的角形,要求角形的邊界與方格表的邊界或分格線重合.求正整數(shù)的最大值,使得無論以何種方式放置了個角形之后,總能在方格表中再放入一個完整的角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是中國建設(shè)史上里程最長,投資最多,難度最大的跨海橋梁項目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些橋梁構(gòu)件質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種橋梁構(gòu)件中隨機(jī)抽取件,記這件橋梁構(gòu)件中質(zhì)量指標(biāo)值位于區(qū)間內(nèi)的橋梁構(gòu)件件數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com