6.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$則z=3x-y的最小值為-3.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=3x-y得y=3x-z,
平移直線y=3x-z由圖象可知當(dāng)直線y=3x-z經(jīng)過點(diǎn)C(0,3)時(shí),直線y=3x-z的截距最大,
此時(shí)z最小.
此時(shí)z=0-3=-3,
故答案為:-3.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.節(jié)能減排以來,蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年 商鞅督造一種標(biāo)準(zhǔn)量器--商鞍銅方升,其三視圖如圖所示(單位:升),則此量器的體積為(單位:立方升)(  )
A.14B.12+$\frac{π}{2}$C.12+πD.38+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的不等式|x-2|+|x-8|≥a在R上恒成立,則a的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則$\frac{y+1}{x}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.展開式${({{x^2}-\frac{2}{x^3}})^5}$中的常數(shù)項(xiàng)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長為2,離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=kx+m(k≠0)與橢圓C交于A,B兩點(diǎn),且線段AB的垂直平分線通過點(diǎn)$({0,-\frac{1}{2}})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)△AOB(O為坐標(biāo)原點(diǎn))面積取最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.x,y是整數(shù),a>b>0,且a+b=10,$\frac{a}{x}+\frac{y}$=1,x+y的最小值為18,則a,b的值分別是(  )
A.a=8,b=2B.a=9,b=1C.a=7,b=3D.a=7,b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|對于任意b∈R都成立.
(1)求a的值;
(2)設(shè)x>y>0,求證:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

查看答案和解析>>

同步練習(xí)冊答案