分析 (1)ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,展開為:ρ2-4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)+6=0.利用互化公式即可得出.
(2)由x2+y2-4x-4y+6=0可得:(x-2)2+(y-2)2=2.圓心C(2,2),半徑r=$\sqrt{2}$.可得|OP|=2$\sqrt{2}$.可得線段OP的最大值為|OP|+r,最小值為|OP|-r.
解答 解:(1)ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,展開為:ρ2-4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)+6=0.
化為:x2+y2-4x-4y+6=0.
(2)由x2+y2-4x-4y+6=0可得:(x-2)2+(y-2)2=2.
圓心C(2,2),半徑r=$\sqrt{2}$.
|OP|=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$.
∴線段OP的最大值為2$\sqrt{2}$+$\sqrt{2}$=3$\sqrt{2}$.
最小值為2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$.
點評 本題考查了極坐標方程化為直角坐標方程、兩點之間距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | log23 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 39 | B. | 40 | C. | 41 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com