【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若x∈[-,0],求函數(shù)f(x)的值域.
【答案】(1);(2);(3).
【解析】
(1)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式;
(2)令2kπ2x2kπ,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間;
(3)由x∈[,0],利用正弦函數(shù)的定義域和值域求得f(x)的值域.
解:(1)由函數(shù)的圖象可得A=2,T==-,求得ω=2.
再根據(jù)五點(diǎn)法作圖可得2×+φ=,∴φ=,故f(x)=2sin(2x+).
(2)令2kπ-≤2x+≤2kπ+,k∈z,求得kπ-≤x≤kπ+,
故函數(shù)的增區(qū)間為[kπ-,kπ+],k∈z.
(3)若x∈[-,0],則2x+∈[-,],∴sin(2x+)∈[-1,],
故f(x)∈[-2,1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為指數(shù)函數(shù),且的圖象過定點(diǎn).
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程,有解,求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提升教師專業(yè)功底,引領(lǐng)青年教師成長,某市教育局舉行了全市“園丁杯”課堂教學(xué)比賽,在這次比賽中,通過采用錄像課評(píng)比的片區(qū)預(yù)賽,有共10位選手脫穎而出進(jìn)入全市決賽.決賽采用現(xiàn)場上課形式,從學(xué)科評(píng)委庫中采用隨機(jī)抽樣抽選代號(hào)1,2,3,…,7的7名評(píng)委,規(guī)則是:選手上完課,評(píng)委們當(dāng)初評(píng)分,并從7位評(píng)委評(píng)分中去掉一個(gè)最高分,去掉一個(gè)最低分,根據(jù)剩余5位評(píng)委的評(píng)分,算出平均分作為該選手的最終得分.記評(píng)委對(duì)某選手評(píng)分排名與該選手最終排名的差的絕對(duì)值為“評(píng)委對(duì)這位選手的分?jǐn)?shù)排名偏差”.排名規(guī)則:由高到低依次排名,如果選手分?jǐn)?shù)一樣,認(rèn)定名次并列(如:選手分?jǐn)?shù)一致排在第二,則認(rèn)為他們同屬第二名,沒有第三名,接下來分?jǐn)?shù)為第四名).七位評(píng)委評(píng)分情況如下表所示:
(1)根據(jù)最終評(píng)分表,填充如下表格:
(2)試借助評(píng)委評(píng)分分析表,根據(jù)評(píng)委對(duì)各選手的排名偏差的平方和,判斷評(píng)委4與評(píng)委5在這次活動(dòng)中誰評(píng)判更準(zhǔn)確.
____號(hào)評(píng)委評(píng)分分析表
選手 | A | B | C | D | E | F | G | H | I | J |
最終排名 | ||||||||||
評(píng)分排名 | ||||||||||
排名偏差 |
(3)從這10位選手中任意選出3位,記其中評(píng)委4比評(píng)委5對(duì)選手排名偏差小的選手?jǐn)?shù)位,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上有兩定點(diǎn)A、B,該平面上一動(dòng)點(diǎn)P與兩定點(diǎn)A、B的連線的斜率乘積等于常數(shù),則動(dòng)點(diǎn)P的軌跡可能是下面哪種曲線:①直線;②圓;③拋物線;④雙曲線;⑤橢圓_____(將所有可能的情況用序號(hào)都寫出來)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)觀測,某公路段在某時(shí)段內(nèi)的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:.
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間上的函數(shù)的圖象如圖所示,記為,,為頂點(diǎn)的三角形的面積為,則函數(shù)的導(dǎo)數(shù)的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺(tái)的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點(diǎn)為的中點(diǎn).
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點(diǎn),使∥面,
并求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com