已知動點A(x,y)到點F(2,0)和直線x=-2的距離相等.
(1)求動點A的軌跡方程;
(2)記點K(-2,0),若,求△AFK的面積.

【答案】分析:(1)由動點A(x,y)到點F(2,0)和直線x=-2的距離相等,知動點A的軌跡為拋物線,由此能求出動點A的軌跡方程.
(2)過A作AB⊥l,垂足為B,根據(jù)拋物線定義,得|AB|=|AF|,由,知△AFK是等腰直角三角形,由此能求出△AFK的面積.
解答:解:(1)∵動點A(x,y)到點F(2,0)和直線x=-2的距離相等,
∴動點A的軌跡為拋物線,其焦點為F(2,0),準線為x=-2
設方程為y2=2px,其中,即p=4…(2分)
所以動點A的軌跡方程為y2=8x.…(2分)
(2)過A作AB⊥l,垂足為B,
根據(jù)拋物線定義,得|AB|=|AF|…(2分)
由于,所以△AFK是等腰直角三角形.…(2分)
其中|KF|=4.…(2分)
所以.…(2分)
點評:本題考查動點的軌跡方程的求法,考查三角形的面積的求法,解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周,已知時間t=0時,點A(
1
2
,
3
2
)
,則0≤t≤12時,動點A的橫坐標x關于t(單位:秒)的函數(shù)單調(diào)遞減區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)一模)已知動點A(x,y)到點F(2,0)和直線x=-2的距離相等.
(1)求動點A的軌跡方程;
(2)記點K(-2,0),若|AK|=
2
|AF|
,求△AFK的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知動點A(x,y)到點F(2,0)和直線x=-2的距離相等.
(1)求動點A的軌跡方程;
(2)記點K(-2,0),若,求△AFK的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省菏澤市鄄城一中高三模擬沖刺數(shù)學試卷(理科)(解析版) 題型:選擇題

已知動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周,已知時間t=0時,點A(,則0≤t≤12時,動點A的橫坐標x關于t(單位:秒)的函數(shù)單調(diào)遞減區(qū)間是( )
A.[0,4]
B.[4,10]
C.[10,12]
D.[0,4]和[10,12]

查看答案和解析>>

同步練習冊答案