【題目】已知.
(1)當(dāng)為何值時(shí), 最小? 此時(shí)與的位置關(guān)系如何?
(2)當(dāng)為何值時(shí), 與的夾角最小? 此時(shí)與的位置關(guān)系如何?
【答案】(1) 當(dāng)時(shí), 最小, ;(2)時(shí), 與的夾角最小, 與平行.
【解析】試題分析:(1)由向量的坐標(biāo)運(yùn)算,可將表示成關(guān)于的二次函數(shù),利用二次函數(shù)的最值求得何時(shí)求最小值.由求得,進(jìn)一步可得兩者位置關(guān)系;(2)由的坐標(biāo)運(yùn)算,轉(zhuǎn)化為關(guān)于的表達(dá)式,由夾角最小時(shí),余弦值最大為,可得關(guān)于的方程,解得,再求得此時(shí)與的坐標(biāo),可判斷兩者的位置關(guān)系.
試題解析:
(1),
當(dāng)時(shí), 最小,此時(shí),, ∴
∴當(dāng)時(shí), 最小,此時(shí).
(2)設(shè)與的夾角為,則,
要與的夾角最小,則最大, ∵,故的最大值為,此時(shí),
,解之得,.
∴時(shí), 與的夾角最小, 此時(shí)與平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下莖葉圖記錄了甲,乙兩組各四名同學(xué)的植樹(shù)棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以表示.
(1)如果,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差;
(2)如果,分別從甲,乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率.(注:方差,其中為, ,……, 的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次水下考古活動(dòng)中,某一潛水員需潛水米到水底進(jìn)行考古作業(yè).其用氧量包含一下三個(gè)方面:①下潛平均速度為米/分鐘,每分鐘用氧量為升;②水底作業(yè)時(shí)間范圍是最少分鐘最多分鐘,每分鐘用氧量為升;③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為升.潛水員在此次考古活動(dòng)中的總用氧量為升.
(1)如果水底作業(yè)時(shí)間是分鐘,將表示為的函數(shù);
(2)若,水底作業(yè)時(shí)間為分鐘,求總用氧量的取值范圍;
(3)若潛水員攜帶氧氣升,請(qǐng)問(wèn)潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文科)(本小題滿分12分)某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | [230,235) | 8 | 0.16 |
第二組 | [235,240) | ① | 0.24 |
第三組 | [240,245) | 15 | ② |
第四組 | [245,250) | 10 | 0.20 |
第五組 | [250,255] | 5 | 0.10 |
合 計(jì) | 50 | 1.00 |
(1)寫(xiě)出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率;
(2)若, 都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知是邊長(zhǎng)為的正方形的中心,點(diǎn)分別是的中點(diǎn),沿對(duì)角線把正方形折成二面角.
(1)證明:四面體的外接球的體積為定值,并求出定值;
(2)若二面角為直二面角,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)場(chǎng)推出了一項(xiàng)趣味活動(dòng),參加活動(dòng)者需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為,獎(jiǎng)勵(lì)規(guī)則如下:①若,則獎(jiǎng)勵(lì)玩具一個(gè);②若,則獎(jiǎng)勵(lì)水杯一個(gè);③其余情況獎(jiǎng)勵(lì)飲料一瓶.假設(shè)轉(zhuǎn)盤(pán)質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(1)求小亮獲得玩具的概率;
(2)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com