如圖,一簡(jiǎn)單幾何體的一個(gè)面ABC內(nèi)接于圓O,G、H分別是AE、BC的中點(diǎn),AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(1)求證:GH∥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,試求該幾何體的V.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)連結(jié)GO,OH,由已知得GO∥平面ACD,OH∥平面ACD,由此能證明GH∥平面ACD.
(2)由V=VE-ABC+VE-ACD,能求出該幾何體的V.
解答: (1)證明:連結(jié)GO,OH,
∵GO∥AD,OH∥AC…(2分)
∴GO∥平面ACD,OH∥平面ACD,又GO交HO于O…(4分)
∴平面GOH∥平面ACD…(5分)
∴GH∥平面ACD…(6分)
(2)解:∵V=VE-ABC+VE-ACD…(8分)
∵AB=2,BC=1,tan∠EAB=
3
2
,
∴BE=
3
,AC=
AB2-BC2
=
3

V=VE-ABC+VE-ACD
=
1
3
S△ACB •EB
+
1
3
S△ACD•DE

=
1
3
×
1
2
×
3
×1×
3
+
1
3
×
1
2
×
3
×
3
×1
=1.…(12分)
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查幾何體的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,若輸出的S=48,則輸入k的值可以為(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若球O的表面積為4π,則球O的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且3S1,2S2,S3成等差數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=log2an,求Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有a升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P,如果:將容器倒置,水面也恰好過(guò)點(diǎn)P有下列四個(gè)命題:
①正四棱錐的高等于正四棱柱的高的一半;
②若往容器內(nèi)再注a升水,則容器恰好能裝滿(mǎn);
③將容器側(cè)面水平放置時(shí),水面恰好經(jīng)過(guò)點(diǎn)P;
④任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn)P.
其中正確命題的序號(hào)為
 
(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

你能利用如圖,給出下列兩個(gè)等式的一個(gè)證明嗎?
1
2
(sinα+sinβ)=sin
α+β
2
cos
α-β
2
;
1
2
(cosα+cosβ)=cos
α+β
2
cos
α-β
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他的6次數(shù)學(xué)測(cè)試成績(jī)(滿(mǎn)分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的說(shuō)法正確的是( 。
A、中位數(shù)為83
B、平均數(shù)為85
C、眾數(shù)為85
D、方差為19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列判斷正確的是(  )
A、命題“a,b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b 都不是偶數(shù)
B、若“p或q”為假命題,則“¬p且¬q”是假命題
C、已知a,b,c是實(shí)數(shù),關(guān)于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且∨≤0
D、x2≠y2?x≠y且x≠-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x+1)10=a1+a2x+a3x2+…+a11x10.若數(shù)列a1,a2,a3,…,ak(1≤k≤11,k∈Z)是一個(gè)單調(diào)遞增數(shù)列,則k的最大值是( 。
A、6B、7C、8D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案