分析 (Ⅰ)當(dāng)a=-4時,求出f′(x),(x>-1),由此能求出函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)求出f′(x),(x>-1),由函數(shù)f(x)在[2,+∞)上單調(diào)遞增,知2x2+2x+a>0在[2,+∞)上恒成立,由此能求出實數(shù)a的取值范圍.
解答 解:(Ⅰ)a=-4,f(x)=x2-4ln(x+1)(x>-1),
f′(x)=$\frac{2(x+2)(x-1)}{x+1}$,(x>-1),
∴當(dāng)-1<x<1時f'(x)<0,當(dāng)x>1時f'(x)>0,
∴函數(shù)f(x)在(-1,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
(Ⅱ)f′(x)=$\frac{{2x}^{2}+2x+a}{x+1}$,(x>-1)
∵函數(shù)f(x)在[2,+∞)上單調(diào)遞增,
∴2x2+2x+a>0在[2,+∞)上恒成立,
令t=2x2+2x=2(x+$\frac{1}{2}$)2-$\frac{1}{2}$,(x≥2),則t≥12,
∴a≥-12.
點(diǎn)評 本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.解題時要認(rèn)真審題,仔細(xì)解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
A. | (1,0) | B. | (2,2) | C. | ($\frac{7}{2}$,$\frac{13}{6}$) | D. | (3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,5] | B. | [-1,4] | C. | (2,6) | D. | (0,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a-c<b-c | B. | $\sqrt{a}$>$\sqrt$ | C. | $\frac{a}{c}$>$\frac{c}$ | D. | ac2>bc2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com