14.設(shè)函數(shù)f(x)=x2+aln(x+1)
(1)若a=-4,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

分析 (Ⅰ)當(dāng)a=-4時,求出f′(x),(x>-1),由此能求出函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)求出f′(x),(x>-1),由函數(shù)f(x)在[2,+∞)上單調(diào)遞增,知2x2+2x+a>0在[2,+∞)上恒成立,由此能求出實數(shù)a的取值范圍.

解答 解:(Ⅰ)a=-4,f(x)=x2-4ln(x+1)(x>-1),
f′(x)=$\frac{2(x+2)(x-1)}{x+1}$,(x>-1),
∴當(dāng)-1<x<1時f'(x)<0,當(dāng)x>1時f'(x)>0,
∴函數(shù)f(x)在(-1,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
(Ⅱ)f′(x)=$\frac{{2x}^{2}+2x+a}{x+1}$,(x>-1)
∵函數(shù)f(x)在[2,+∞)上單調(diào)遞增,
∴2x2+2x+a>0在[2,+∞)上恒成立,
令t=2x2+2x=2(x+$\frac{1}{2}$)2-$\frac{1}{2}$,(x≥2),則t≥12,
∴a≥-12.

點(diǎn)評 本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.解題時要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)=x3-3x+a有唯一零點(diǎn),則a的取值范圍是( 。
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x與y之間的幾組數(shù)據(jù)如表:
x123456
y021334
假設(shè)根據(jù)如表數(shù)據(jù)所得線性回歸直線l的方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則l一定經(jīng)過的點(diǎn)為( 。
A.(1,0)B.(2,2)C.($\frac{7}{2}$,$\frac{13}{6}$)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x>0,y>0,若-1≤lg$\frac{x}{y}$≤2,1≤lg(xy)≤4,則lg$\frac{{x}^{2}}{y}$的取值范圍是(  )
A.[-1,5]B.[-1,4]C.(2,6)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=lnx+2x,若f(x2)<f(6-x),則實數(shù)x的取值范圍是(-3,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,|$\overrightarrow$|=2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)-a,且x=-$\frac{π}{12}$是方程f(x)=0的一個解.
(1)求實數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若關(guān)于x的方程f(x)=b在區(qū)間(0,$\frac{7π}{6}$)上恰有三個不相等的實數(shù)根x1,x2,x3,直接寫出實數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a、b、c∈R,且a>b>0,則下列不等式一定成立的是( 。
A.a-c<b-cB.$\sqrt{a}$>$\sqrt$C.$\frac{a}{c}$>$\frac{c}$D.ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為平行四邊形,AB=1,AC=$\sqrt{3}$,AD=2,M、N分別為棱PA、BC的中點(diǎn).
(1)求證:MN∥平面PCD;
(2)若二面角P-CD-B等于30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案