(本題滿分10分) 如圖,P—ABCD是正四棱錐,是正方體,其中
(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;
以為軸,為軸,為軸建立空間直角坐標系
(1)通過建立空間直角坐標系,確定 ,
證得 推出.
(2).
解析試題分析:以為軸,為軸,為軸建立空間直角坐標系
(1)證明:設(shè)E是BD的中點,P—ABCD是正四棱錐,
∴
又, ∴ ∴
∴
∴ , 即.-----------------5分
(2)解:設(shè)平面PAD的法向量是,
∴ 取得,
又平面的法向量是
∴ , ∴.-----------------10分
考點:本題主要考查立體幾何中的垂直關(guān)系,二面角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用“向量法”則簡化了證明過程,且思路清晰,方法明確。適當建立空間直角坐標系是關(guān)鍵。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)如圖所示,四棱錐中,底面是邊長為2的菱形,是棱上的動點.
(Ⅰ)若是的中點,求證://平面;
(Ⅱ)若,求證:;
(III)在(Ⅱ)的條件下,若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,, E、F分別為的中點,.
(Ⅰ)求證:平面平面.
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點.
(1)求證:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大;
(3)求點E到平面O1BC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中點.
(Ⅰ)求證:DA⊥平面PAC;
(Ⅱ)點G為線段PD的中點,證明CG∥平面PAF;
(Ⅲ)求三棱錐A—CDG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,且平面⊥底面
(1)求證:⊥平面
(2)求直線與底面所成角的余弦值;
(3)設(shè),求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點,AB=AC=BE=2,CD=1
(Ⅰ)求證:DC∥平面ABE;
(Ⅱ)求證:AF⊥平面BCDE;
(Ⅲ)求證:平面AFD⊥平面AFE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,是與的交點,平面,是側(cè)棱的中點,異面直線和所成角的大小是60.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com