【題目】已知圓C:,直線l過定點(diǎn).
(1)若直線l與圓C相切,求直線l的方程;
(2)若直線l與圓C相交于P,Q兩點(diǎn),求的面積的最大值,并求此時(shí)直線l的方程.
【答案】(1)或
【解析】
(1)通過直線的斜率存在與不存在兩種情況,利用直線的方程與圓C相切,圓心到直線的距離等于半徑即可求解直線的方程;
(2)設(shè)直線方程為,求出圓心到直線的距離、求得弦長,得到的面積的表達(dá)式,利用二次函數(shù)求出面積的最大值時(shí)的距離,然后求出直線的斜率,即可得到直線的方程.
(1)①若直線l1的斜率不存在,則直線l1:x=1,符合題意.
②若直線l1斜率存在,設(shè)直線l1的方程為,即.
由題意知,圓心(3,4)到已知直線l1的距離等于半徑2,即: ,解之得 . 所求直線l1的方程是或.
(2)直線與圓相交,斜率必定存在,且不為0, 設(shè)直線方程為,
則圓心到直線l1的距離
又∵△CPQ的面積
=
∴當(dāng)d=時(shí),S取得最大值2.
∴= ∴ k=1 或k=7
所求直線l1方程為 x-y-1=0或7x-y-7=0 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央、國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位在某市定點(diǎn)幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這戶村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”;當(dāng)時(shí),認(rèn)定該戶為“亟待幫住戶”.工作組又對(duì)這戶家庭的受教育水平進(jìn)行評(píng)測,家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對(duì)貧困戶數(shù)與受教育水平不好有關(guān):
受教育水平良好 | 受教育水平不好 | 總計(jì) | |
絕對(duì)貧困戶 | |||
相對(duì)貧困戶 | |||
總計(jì) |
(2)上級(jí)部門為了調(diào)查這個(gè)村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機(jī)選取兩戶,用表示所選兩戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學(xué)期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在區(qū)間上的函數(shù),若任給,均有,則稱函數(shù)在區(qū)間上是封閉.
(1)試判斷在區(qū)間上是否封閉,并說明理由;
(2)若函數(shù)在區(qū)間上封閉,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的極值;
(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,則下列說法正確的有( )
A.不等式的解集為;
B.函數(shù)在單調(diào)遞增,在單調(diào)遞減;
C.當(dāng)時(shí),總有恒成立;
D.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:經(jīng)過點(diǎn),離心率,直線的方程為 .
(1)求橢圓的方程;
(2)經(jīng)過橢圓右焦點(diǎn)的任一直線(不經(jīng)過點(diǎn))與橢圓交于兩點(diǎn),,設(shè)直線與相交于點(diǎn),記的斜率分別為,問:是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女姓450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.
(1)己知抽取的名學(xué)生中含男生55人,求的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
附:,.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈市某公司為了了解用戶對(duì)其產(chǎn)品的滿意度,從南崗區(qū)隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)其產(chǎn)品的滿意度的評(píng)分,得到用戶滿意度評(píng)分的頻率分布表.
滿意度評(píng)分分組 | |||||
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)在答題卡上作出南崗區(qū)用戶滿意度評(píng)分的頻率分布直方圖;
南崗區(qū)用戶滿意度評(píng)分的頻率分布直方圖
(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度評(píng)分分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
估計(jì)南崗區(qū)用戶的滿意度等級(jí)為不滿意的概率;
(3)求該公司滿意度評(píng)分的中位數(shù)(保留小數(shù)點(diǎn)后兩位).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com