19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=1+cos2α}\end{array}\right.$(α為參數(shù)),則曲線C的普通方程是y=$\frac{1}{2}{x}^{2}$,x∈[-2,2].

分析 由y=1+cos2α=2cos2α,x=2cosα,能求出曲線C的普通方程.

解答 解:∵曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=1+cos2α}\end{array}\right.$(α為參數(shù)),cosα∈[-1,1],cos2α∈[-1,1],
∴y=1+cos2α=2cos2α=$\frac{1}{2}(2cosα)^{2}$=$\frac{1}{2}{x}^{2}$,x∈[-2,2],
∴曲線C的普通方程是y=$\frac{1}{2}{x}^{2}$,x∈[-2,2].
故答案為:y=$\frac{1}{2}{x}^{2}$,x∈[-2,2].

點評 本題考查曲線的普通方程的求法,解題時要認真審題,注意余弦二倍角公式的合理運用,注意自變量的取值范圍的確定.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,AB=AC=$\sqrt{5}$,BC=2,點D是AC的中點,點E在AB上,且$\overrightarrow{BD}$$•\overrightarrow{CE}$=-$\frac{3}{8}$,則$\overrightarrow{DE•}$$\overrightarrow{BC}$=( 。
A.-$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.tanα,tanβ為方程x2-2x-1=0的根,則tan(α+β)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,∠A=120°,K、L分別是AB、AC上的點,且BK=CL,以BK,CL為邊向△ABC的形外作正三角形BKP和正三角形CLQ.證明:PQ=BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.直線x-y+2=0與圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的位置關系是( 。
A.相離B.相切
C.直線過圓心D.相交但直線不過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知在四棱錐S-ABCD中,四邊形ABCD是菱形,SD⊥平面ABCD,P為SB的中點,Q為BD上一動點.AD=2,SD=2,∠DAB=$\frac{π}{3}$.
(Ⅰ)求證:AC⊥PQ;
(Ⅱ)當PQ∥平面SAC時,求四棱錐P-AQCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.將下列曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀,
(1)ρ=4sinθ;
(2)(ρ-1)(θ-π)=0;
(3)ρcos(θ-$\frac{π}{3}$)=1;
(4)$θ=\frac{π}{4}$(ρ∈R);
(5)ρcosθ=2sin2θ;
(6)ρ2cosθ-ρ=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線L:ρcosθ-$\sqrt{3}$ρsinθ+1=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=5+cosα\\ y=sinα\end{array}\right.$(α為參數(shù)).
(Ⅰ)求直線L和曲線C的普通方程;
(Ⅱ)在曲線C上求一點Q,使得Q到直線L的距離最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.根據(jù)所給條件求直線的方程:
(1)直線過點(-3,4),且在兩坐標軸上的截距相等;
(2)直線過點(5,10),且到原點的距離為5.

查看答案和解析>>

同步練習冊答案