20.已知函數(shù)f(x)=log2[ax2+(a-1)x+$\frac{1}{4}$].
(1)若定義域為R,求實數(shù)a的取值范圍;
(2)若值域為R,求實數(shù)a的取值范圍.

分析 (1)函數(shù)f(x)的定義域是使對數(shù)的真數(shù)有意義x的取值范圍,故函數(shù)定義域為R等價于真數(shù)對應的二次函數(shù)取值恒大于零,由此不難列出根的判別式小于0,從而得到實數(shù)a的取值范圍.
(2)函數(shù)f(x)的值域為R,說明對數(shù)的真數(shù)取到所有的正數(shù),由此可得(0,+∞)包含于真數(shù)對應二次函數(shù)的值,由此可得根的判別大于或等于0,從而得到實數(shù)a的取值范圍

解答 解:(1)若定義域為R,則ax2+(a-1)x+$\frac{1}{4}$>0恒成立,
則$\left\{\begin{array}{l}a>0\\△={(a-1)}^{2}-a<0\end{array}\right.$
得0<a<$\frac{3+\sqrt{13}}{2}$.------------------------------------------------------------(6分)
(2)若函數(shù)的值域是R,
則(0,+∞)包含于真數(shù)的取值范圍,
∴a=0,或$\left\{\begin{array}{l}a>0\\△={(a-1)}^{2}-a≥0\end{array}\right.$
解得:a=0,或a≥$\frac{3+\sqrt{13}}{2}$.-------(12分)

點評 本題著重考查了對數(shù)型函數(shù)的定義域和值域、函數(shù)的圖象與性質(zhì)等知識點,屬于中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t為參數(shù)),在直角坐標系xOy中,以O點為極點,x軸的非負半軸為極軸,以相同的長度單位建立極坐標系,設圓M的方程為ρ2-6ρsinθ=-8.
(Ⅰ)求圓M的直角坐標方程;
(Ⅱ)若直線l截圓M所得弦長為$\sqrt{3}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直角坐標系xOy中,點P為曲線C:x2+y2-2x-2y=0上一點,點M為線段OP中點,以坐標原點為極點,x軸非負半軸為極軸,建立極坐標系.
(Ⅰ)求點M軌跡E的極坐標方程;
(Ⅱ)直線l1:y=$\sqrt{3}$x,l2:y=$\frac{\sqrt{3}}{3}$x與軌跡E的交點分別為A,B,求△AOB的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求a的取值范圍,使得函數(shù)y=log2[x2+(a-1)x+$\frac{9}{4}$]的定義域為全體實數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設A=$[\begin{array}{l}{-1}&{2}&{0}\\{5}&{2}&{-3}\\{0}&{1}&{1}\end{array}]$,寫出-5A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求下列函數(shù)的定義域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.由曲線y=|x-1|與(x-1)2+y2=4所圍成較小扇形的面積是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.圓x2+y2-4y=0被過原點且傾斜角為45°的直線所截得的弦長為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.從某校參加高二年級學業(yè)水平考試模擬考試的學生中抽取60名學生,將其數(shù)學成績分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問題:
(1)估計這次考試成績的平均分;
(2)估計這次考試成績的及格率和眾數(shù).

查看答案和解析>>

同步練習冊答案