函數(shù)f(x)=
tanxx≥0
2xx<0
,則不等式f(x)<
3
的解集是
 
考點:其他不等式的解法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:不等式f(x)<
3
即為
x≥0
tanx<
3
x<0
2x
3
,運用正切函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)的單調(diào)性即可解得.
解答: 解:函數(shù)f(x)=
tanxx≥0
2xx<0

則不等式f(x)<
3
即為
x≥0
tanx<
3
x<0
2x
3
,
則有kπ<x<kπ+
π
3
,k∈N,或x<0,
則解集為{x|kπ<x<kπ+
π
3
,k∈N,或x<0}.
故答案為:{x|kπ<x<kπ+
π
3
,k∈N,或x<0}.
點評:本題考查分段函數(shù)及運用:解不等式,考查正切函數(shù)的圖象和性質(zhì),及指數(shù)函數(shù)的性質(zhì),考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2-2x)lnx+ax2+2.
(Ⅰ)當a=-1時,求f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,設(shè)函數(shù)g(x)=f(x)-x-2,且函數(shù)g(x)有且僅有一個零點,若e-2<x<e,g(x)≤m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x2+x關(guān)于3x+2y-1=0直線對稱的曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一位同學設(shè)計計算13+23+…+103的程序框圖時把圖中的①②的順序顛倒了,則輸出的結(jié)果比原結(jié)果大
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且有(2c+b)cosA+acosB=0;
(1)求∠A的大;
(2)若a=4
3
,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+
2
)9
展開式中有理項的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C1
x2
11
+y2=1,雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A、B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( 。
A、
5
B、5
C、
17
D、
2
14
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
16
-
y2
b2
=1(b>0)的一個頂點到與此頂點較遠的一個焦點的距離為9,則雙曲線的離心率是( 。
A、
4
3
B、
5
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x+y-6
x+y
+3k=0僅表示一條直線,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習冊答案