若方程x+y-6
x+y
+3k=0僅表示一條直線,則實(shí)數(shù)k的取值范圍是
 
考點(diǎn):曲線與方程
專題:計(jì)算題,直線與圓
分析:先將原方程變形,再分類討論,即可求得實(shí)數(shù)k的取值范圍.
解答: 解:原方程可變形為(
x+y
-3)2=9-3k,∴
x+y
9-3k
+3①
顯然,k=3時(shí),x+y=9;當(dāng)0≤k<3時(shí),①式右邊有兩值,則直線不唯一;
當(dāng)k<0時(shí),①式右邊一正一負(fù),負(fù)值不滿足,
故所求k的取值范圍是k=3或k<0.
故答案為:k=3或k<0.
點(diǎn)評(píng):本題考查曲線與方程,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
tanxx≥0
2xx<0
,則不等式f(x)<
3
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C1:x2+y2=9;⊙C2:(x-4)2+(y-6)2=1,兩圓的內(nèi)公切線交于P1點(diǎn),外公切線交于P2點(diǎn),若
P1C1
C1P2
,則λ等于(  )
A、-
9
16
B、-
1
2
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD||BC,PD⊥底面ABCD,
∠ADC=90°,AD=2BC,Q為AD的中點(diǎn),M為棱PC的中點(diǎn).
(Ⅰ)證明:PA∥平面BMQ;
(Ⅱ)已知PD=DC=AD=2,求點(diǎn)P到平面BMQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面內(nèi)互不相等的非零向量
a
b
滿足|
a
|=1,
a
-
b
b
的夾角為150°,則
a
b
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過拋物線y2=4x的焦點(diǎn)F,交拋物線于A,B兩點(diǎn),且點(diǎn)B在x軸下方,若直線l的傾斜角θ≤
4
,則|FB|的取值范圍是( 。
A、(1,4+2
2
]
B、(1,3+2
2
]
C、(2,4+2
2
]
D、(2,6+2
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
均為非零向量,給出下列說法
①0•
a
=0②(
a
b
)•
c
=
a
•(
b
c
)③若
a
b
,
b
c
,則
a
c
④若
a
b
,則|
a
+
b
|=|
a
-
b
|;⑤若(
a
+
b
)•(
a
-
b
)=0,則
a
b

其中正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、若x∈C,則方程x3=2只有一個(gè)根
B、若z1∈C,z2∈C且z1-z2>0,則z1>z2
C、若z∈R,則z•
.
z
=|z|2
不成立
D、若z∈C,且z2<0,那么z一定是純虛數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCD-A1B1C1D1中,AB=2,BC=2,CC1=4,M為棱CC1上一點(diǎn).
(1)若C1M=1,求異面直線A1M和C1D1所成角的正切值;
(2)若C1M=2,求證BM⊥平面A1B1M.

查看答案和解析>>

同步練習(xí)冊答案