13.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(2)+ln x,則f′(2)=( 。
A.-eB.$\frac{1}{2}$C.-$\frac{1}{2}$D.e

分析 將f′(2)看出常數(shù)利用導(dǎo)數(shù)的運(yùn)算法則求出f′(x),令x=2即可求出f′(2).

解答 解:f′(x)=2f′(2)+$\frac{1}{x}$
令x=2得f′(2)=2f′(2)+$\frac{1}{2}$
∴f′(2)=-$\frac{1}{2}$,
故選:C

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算法則、考查通過(guò)賦值求出導(dǎo)函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在如圖1所示的平面圖形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四邊形ABCD為矩形,AD=2,CD=$\sqrt{2}$,△BCF為直角三角形.把△ADE與△BCF分別沿AD、BC折成如圖2所示的幾何體,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求證:BD⊥EF;
(2)若CF=1,試求EF與面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列向量$\overrightarrow a$與$\overrightarrow b$共線(其中向量$\overrightarrow{e_1}與\overrightarrow{e_2}$不共線)的是( 。
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.sin(-375°)=( 。
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若數(shù)列{an}的通項(xiàng)公式是an=(-1)n(3n-1),前n項(xiàng)和為Sn,則S11等于( 。
A.-187B.-2C.-32D.-17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列可以作為直線2x-y+1=0的參數(shù)方程的是( 。
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t為參數(shù))$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t為參數(shù))$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t為參數(shù))$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t為參數(shù))$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=x3+log2x,$則\lim_{t→0}\frac{f(1+t)-f(1)}{t}$=3+$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知關(guān)于x的不等式2x+$\frac{1}{(x-a)^{2}}$≥7在x∈(a,+∞)上恒成立,則實(shí)數(shù)a的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC周長(zhǎng)為6,a,b,c分別為角A,B,C的對(duì)邊,且a,b,c成等比數(shù)列,則$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍為( 。
A.[2,18)B.($\frac{3(\sqrt{5}-1)}{2}$,2]C.[2,$\frac{27-9\sqrt{5}}{2}$)D.(2,9-3$\sqrt{5}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案