精英家教網 > 高中數學 > 題目詳情
15.在平面上任畫一向量$\overrightarrow{a}$,求作下列向量:
(1)$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AB}$=-2$\overrightarrow{a}$;
(2)$\overrightarrow{EF}$=$\frac{3}{2}$$\overrightarrow{a}$,$\overrightarrow{GH}$=-$\frac{3}{2}$$\overrightarrow{a}$;
(3)$\overrightarrow{OP}$=$\overrightarrow{a}$+0.8$\overrightarrow{a}$-1.2$\overrightarrow{a}$.

分析 根據向量數乘的幾何意義作圖.

解答 解:向量$\overrightarrow{a}$如圖所示:

(1)作出向量如圖所示:

(2)作出向量如圖所示:

(3)作出向量如圖所示:

點評 本題考查了平面向量數乘的幾何意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.已知函數f(x)=1+2sin(2x-$\frac{π}{3}$).

(1)用五點法作圖作出f(x)在x∈[0,π]的圖象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.復數1+3i的模為$\sqrt{10}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.定義運算$|\begin{array}{l}{a}&\\{c}&syrayru\end{array}|$=ad-bc,若$|\begin{array}{l}{sinθ}&{2}\\{cosθ}&{1}\end{array}|$=0,則$\frac{sinθ+cosθ}{sinθ-cosθ}$3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.如圖,一次函數y=ax+b與反比例函數y=$\frac{k}{x}$(x<0)的圖象交于點A,與x軸、y軸分別交于點B、C,過點A作AD⊥x軸于點D,過點D作DE∥AB,交y軸于點E,已知四邊形ADEC的面積為6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2,求點E的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.若(1-$\frac{2}{x}$)2n的展開式有9項,則n的值為.
A.5B.4C.9D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知角α的終邊經過一點P(1,4$\sqrt{3}$),cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
(1)求tanα+tan2α的值;(2)求β.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知等比數列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$,求a1與q.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.在鈍角△ABC中,∠A為鈍角,令$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow$=$\overrightarrow{AC}$,若$\overrightarrow{AD}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R).現給出下面結論:
①當x=$\frac{1}{3},y=\frac{1}{3}$時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為S△ABD,S△ACD,當x=$\frac{4}{5},y=\frac{3}{5}$時,$\frac{{{S_{△ABD}}}}{{{S_{△ACD}}}}=\frac{3}{4}$;
③若點D在△ABC內部(不含邊界),則$\frac{y+1}{x+2}$的取值范圍是$(\frac{1}{3},1)$;
④若$\overrightarrow{AD}$=λ$\overrightarrow{AE}$,其中點E在直線BC上,則當x=4,y=3時,λ=5.
其中正確的有①②③(寫出所有正確結論的序號).

查看答案和解析>>

同步練習冊答案