10.如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=$\frac{k}{x}$(x<0)的圖象交于點A,與x軸、y軸分別交于點B、C,過點A作AD⊥x軸于點D,過點D作DE∥AB,交y軸于點E,已知四邊形ADEC的面積為6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2,求點E的坐標(biāo).

分析 (1)設(shè)函數(shù)y=ax+b與y=$\frac{k}{x}$圖象的交點A(m,$\frac{k}{m}$),判斷四邊形ADEC是平行四邊形,利用面積公式列出方程求出k的值;
(2)根據(jù)題意設(shè)出點A、B、C的坐標(biāo),列出方程組求出對應(yīng)的坐標(biāo),即可求出點E的坐標(biāo).

解答 解:(1)設(shè)函數(shù)y=ax+b與y=$\frac{k}{x}$圖象的交點A(m,$\frac{k}{m}$),其中m<0;
則|AD|=$\frac{k}{m}$,|OD|=|m|=-m,
又DE∥AB,且AD∥CD,
∴四邊形ADEC是平行四邊形,其面積為
|CE|•|OD|=$\frac{k}{m}$•(-m)=6,
解得k=-6;
(2)∵k=-6,∴y=$\frac{-6}{x}$;
設(shè)函數(shù)y=ax+b與y=$\frac{-6}{x}$(x<0)圖象的交點A(m,$\frac{-6}{m}$),其中m<0;
且與x軸、y軸分別交于點B(-$\frac{a}$,0)、C(0,b),
則點D(m,0),且AD=CE;
∵AD=3OC,∴$\frac{-6}{m}$=3b①;
又tan∠DAC=2,∴-$\frac{a}$-m=2•$\frac{-6}{m}$②;
又$\frac{-6}{m}$=am+b③,
由①②③組成方程組,解得m=-2$\sqrt{2}$,a=-$\frac{1}{2}$,b=$\frac{\sqrt{2}}{2}$;
∴OE=2OC=$\sqrt{2}$,
則點E(0,-$\sqrt{2}$).

點評 本題考查了一次函數(shù)與反比例函數(shù)的應(yīng)用問題,也考查了方程思想與數(shù)形結(jié)合思想的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角.
求$\frac{{1-{{cos}^2}α}}{{cos(\frac{3π}{2}-α)+cosα}}$+$\frac{{sin(α-\frac{7π}{2})+sin(2017π-α)}}{{{{tan}^2}α-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等腰三角形的一個底角的正弦等于$\frac{5}{13}$,則這個三角形頂角的余弦值為( 。
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.$\frac{120}{169}$D.-$\frac{119}{169}$或$\frac{119}{169}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2$\sqrt{3}$sin($\frac{1}{2}$ωx)•cos($\frac{1}{2}$ωx)+2cos2($\frac{1}{2}$ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若函數(shù)f(x)=cos(ωx+φ),ω>0,|φ|<$\frac{π}{2}$)的一個零點與之相鄰的對稱軸之間的距離為$\frac{π}{4}$,且x=$\frac{2π}{3}$時f(x)有最小值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)請直接在給定的坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象;(注:作圖過程可以省略)
(Ⅲ)若x∈[$\frac{π}{4}$,$\frac{5π}{6}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面上任畫一向量$\overrightarrow{a}$,求作下列向量:
(1)$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AB}$=-2$\overrightarrow{a}$;
(2)$\overrightarrow{EF}$=$\frac{3}{2}$$\overrightarrow{a}$,$\overrightarrow{GH}$=-$\frac{3}{2}$$\overrightarrow{a}$;
(3)$\overrightarrow{OP}$=$\overrightarrow{a}$+0.8$\overrightarrow{a}$-1.2$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點P,Q的坐標(biāo)分別為(-1,1),(2,2),若直線l:x+my+m=0與PQ的延長線相交,則實數(shù)m的取值范圍是-3<m<-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$\overrightarrow{a}$為非零向量,且$\overrightarrow$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,$\overrightarrow{c}$=(cosθ,sinθ),則向量$\overrightarrow$與$\overrightarrow{c}$一定滿足( 。
A.$\overrightarrow$∥$\overrightarrow{c}$B.($\overrightarrow$+$\overrightarrow{c}$)⊥($\overrightarrow$-$\overrightarrow{c}$)C.$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{a}$D.$\overrightarrow$•$\overrightarrow{c}$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)${z_1}=\frac{3}{a+2}+({a^2}-3)i$,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若z1∈R,求a的值;
(2)若復(fù)數(shù)z1-z2在復(fù)平面上對應(yīng)點落在第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案