【題目】設(shè)a,b,c∈R,證明:a2+b2+c2≥ab+ac+bc.
【答案】證明:方法一、由a2+b2≥2ab,
a2+c2≥2acb2+c2≥2bc,
相加可得:2a2+2b2+2c2≥2ab+2ac+2bc,
所以a2+b2+c2≥ab+ac+bc(當(dāng)且僅當(dāng)a=b=c取得等號(hào));
方法二、由a2+b2+c2﹣ab﹣ac﹣bc= (2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)
= [(a﹣b)2+(a﹣c)2+(b﹣c)2]≥0,
則a2+b2+c2≥ab+ac+bc(當(dāng)且僅當(dāng)a=b=c取得等號(hào)).
【解析】方法一、運(yùn)用重要不等式a2+b2≥2ab,累加即可得證;
方法二、運(yùn)用作差比較法,由完全平方式非負(fù),即可得證.
【考點(diǎn)精析】關(guān)于本題考查的不等式的證明,需要了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是( )
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①﹣3是函數(shù)y=f(x)的極值點(diǎn);
②﹣1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.
則正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C﹣ADE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù), +1.
(1)若,曲線y=f(x)與在x=0處有相同的切線,求b;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對(duì)任意恒成立,求b的取值區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和單調(diào)減區(qū)間;
(2)已知的三個(gè)內(nèi)角的對(duì)邊分別為,其中,若銳角滿足,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其對(duì)稱(chēng)軸為y軸(其中b,c為常數(shù)) (Ⅰ)求實(shí)數(shù)b的值;
(Ⅱ)記函數(shù)g(x)=f(x)﹣2,若函數(shù)g(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對(duì)任意c∈R成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD,BC相交于E點(diǎn),F為CE上一點(diǎn),且DE2=EF·EC.
(1)求證:∠P=∠EDF;
(2)求證:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com