7.函數(shù)$y=\sqrt{{{log}_{\frac{2}{3}}}(2x-1)}$的定義域是($\frac{1}{2}$,1].

分析 由根式內(nèi)部的代數(shù)式大于等于0,求解對(duì)數(shù)不等式得答案.

解答 解:由$lo{g}_{\frac{2}{3}}(2x-1)≥0$,得0<2x-1≤1,即$\frac{1}{2}<x≤1$.
∴函數(shù)$y=\sqrt{{{log}_{\frac{2}{3}}}(2x-1)}$的定義域是($\frac{1}{2}$,1].
故答案為:($\frac{1}{2}$,1].

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了對(duì)數(shù)不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,a∈R.
(I)若函數(shù)f(x)在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為$\frac{π}{6}$,求ω的值;
(Ⅱ)在(I)的條件下,若f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值為$\frac{\sqrt{3}+1}{2}$,求實(shí)數(shù)a的值;
(Ⅲ)若函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{2}$]上單調(diào)遞增,求實(shí)數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了得到函數(shù)y=$\frac{1}{2}$sin4x-$\frac{\sqrt{3}}{2}$cos4x的圖象,可以將函數(shù)y=sin4x的圖象( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{3}$個(gè)單位D.向左平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知m∈(0,1),令a=logm2,b=m2,c=2m,那么a,b,c之間的大小關(guān)系為( 。
A.b<c<aB.b<a<cC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(-1,0),$\overrightarrow c$=(6,4),則$\overrightarrow{c}$=(  )
A.4$\overrightarrow{a}$-2$\overrightarrow$B.4$\overrightarrow{a}$+2$\overrightarrow$C.-2$\overrightarrow{a}$+4$\overrightarrow$D.2$\overrightarrow{a}$+4$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)l為直線,α,β是兩個(gè)不同的平面,下列命題中正確的是(3).
(1)若l∥α,l∥β,則α∥β
(2)若l⊥α,l∥β,則α∥β
(3)若l⊥α,l∥β,則α⊥β
(4)若α⊥β,l∥α,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在等差數(shù)列{an}中,若a4+a6=12,Sn是數(shù)列{an}的前n項(xiàng)和,則S9的值為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若ab=0,則a=0或b=0.(用適當(dāng)邏輯連接詞“或”、“且”、“非”填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{m}^{2}}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,雙曲線外一點(diǎn)P關(guān)于點(diǎn)F1、F2的對(duì)稱點(diǎn)分別為A、B,線段PQ的中點(diǎn)在曲線C上,則|QA|-|QB|的值為( 。
A.6B.12C.24D.4|m|

查看答案和解析>>

同步練習(xí)冊(cè)答案