若集合A={x|-1≤2x+1≤3},B={x|
x-2
x
≤0}
,則A∩B=( 。
A、{x|-1≤x<0}
B、{x|-1≤x<0}
C、{x|0≤x≤2}
D、{x|0<x≤1}
考點:交集及其運算
專題:集合
分析:利用交集定義和不等式性質(zhì)求解.
解答: 解:∵集合A={x|-1≤2x+1≤3}={x|-1≤x≤1},
B={x|
x-2
x
≤0}
={x|0<x≤2},
∴A∩B={x|0<x≤1}.
故選:D.
點評:本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題,注意不等式性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1
x+1
,
(1)求f(2)+f(
1
2
),f(3)+f(
1
3
);
(2)求f(1)+f(2)+f(3)+…+f(2013)+f(
1
2
)+f(
1
3
)+…f(
1
2013
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在實數(shù)R上的偶函數(shù),且f(1-x)=f(1+x),當x∈[0,1]時,f(x)=1-x,函數(shù)
g(x)=log5|x|.
(1)判斷函數(shù)g(x)=log5|x|的奇偶性; 
(2)證明:對任意x∈R,都有f(x+2)=f(x);
(3)在同一坐標系中作出f(x)與g(x)的大致圖象并判斷其交點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=cos(x+
π
6
),x∈[0,
π
2
],則函數(shù)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且4Sn=an2+2an(n∈N*
(1)求a1的值及數(shù)列{an}的通項公式;
(2)記數(shù)列{
1
an3
}的前n項和為Tn,求證:Tn
7
32
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,BD⊥PC,AB=BC=2,AD=CD=
7
,PA=
3
,PC=
15
,∠ABC=120°,G為線段PC上的點.
(1)求證:PA⊥面ABCD;
(2)若G滿足
PG
GC
=
3
2
,求證:PC⊥面BGD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列
5
2.3
,-
7
3.4
,
9
4.5
,-
11
5.6
,…的通項是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=a
x2+1
|x|
(a>0,a≠1),有以下命題:
①函數(shù)圖象關(guān)于軸對稱;
②當a>1時,函數(shù)在(1,+∞)上為增函數(shù);
③當0<a<1時,函數(shù)有最大值,且最大值為a2;
④函數(shù)的值域為(a2,+∞).
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體AC1中,E,F(xiàn)分別是A1B1,B1C1的中點.
(Ⅰ)求異面直線DB1與EF所成角的大小;
(Ⅱ)求異面直線AD1與EF所成角的大。

查看答案和解析>>

同步練習冊答案