【題目】已知平面上動點P到定點的距離比P到直線的距離大1.記動點P的軌跡為曲線C.

1)求曲線C的方程;

2)過點的直線交曲線CA、B兩點,點A關于x軸的對稱點是D,證明:直線恒過點F.

【答案】12)證明見解析

【解析】

(1)先分析出點P在直線的右側,然后利用拋物線的定義寫出方程即可

(2)設出直線的方程和A、B兩點坐標,聯(lián)立方程求出的范圍和A、B兩點縱坐標之和和積,寫出直線的方程,然后利用前面得到的關系化簡即可.

1)不難發(fā)現(xiàn),點P在直線的右側,

P的距離等于P到直線的距離.

P的軌跡為以為焦點,以為準線的拋物線,

∴曲線C的方程為.

2)設直線的方程為,

聯(lián)立,得,,解得.

,.

又點A關于x軸的對稱點為D

則直線的方程為

,得.

∴直線恒過定點,而點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)濟訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關于每次訂貨(單位)的函數(shù)關系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.

(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;

(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點;

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當 時,函數(shù) 的圖象與軸交于兩點 ,且 ,又的導函數(shù).若正常數(shù) 滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.

(1)求橢圓的方程;

(2)設直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面與平面平行的充分條件可以是(

A.內(nèi)有無窮多條直線都與平行

B.直線,,且直線a不在內(nèi),也不在內(nèi)

C.直線,直線,且,

D.內(nèi)的任何一條直線都與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為

(l)設為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓,定義橢圓的“相關圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構成直角三角形.

(1)求橢圓的方程和“相關圓”的方程;

(2)過“相關圓”上任意一點的直線與橢圓交于兩點.為坐標原點,若,證明原點到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

同步練習冊答案