以下四個命題:①在圓柱的上、下兩底面的圓周上各取一點,則這兩點的連線是圓柱的母線;②圓錐的頂點與底面圓周上任意一點的連線是圓錐的母線;③圓臺上、下圓周上各取一點,則兩點的連線是圓臺的母線;④圓柱的任意兩條母線相互平行.
其中正確的是( )
利用圓柱、圓錐、圓臺、母線的定義可知①③不正確,②④正確,故選D.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
.如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,E、F分別是AB、SC的中點。
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)設SD = 2CD,求二面角A-EF-D的大小;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
P—ABCD中,
PD⊥底面
ABCD,底面
ABCD為正方形,
PD=
DC,
E、
F分別是
AB,
PB的中點.
(I)求證:
EF⊥
CD;
(II)求
DB與平面
DEF所成角的正弦值;
(III)在平面
PAD內是否存在一點
G,使
G在平面
PCB上的射影為△
PCB的外心,若存在,試確定點
G的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如果直線l,m與平面α、β、γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有( )
A.α⊥γ且l⊥m | B.α⊥γ且m∥β |
C.m∥β且l⊥m | D.α∥β且α⊥γ |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
右圖幾何體是由下邊的哪一個平面圖形旋轉而形成的( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若m,n表示直線,α表示平面,給出下列命題:
①
②
m∥n;③
m⊥n;④
n⊥α.
其中正確命題的個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖1,在四棱錐
P-ABCD中,底面
ABCD是正方形,側棱
底面
ABCD,
PD=DC,
E是
PC的中點,作
交
PB于
F.
(1) 證明:
平面
EDB;
(2) 證明:
平面
EFD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,一個立方體,它的每個角都截去一個三棱錐,變成一個新的立體圖形。那么在新圖形頂點之間的連線中,位于原立方體內部的有
條。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在四面體PABC中,已知PA=PB=PC=AB=AC=
,BC=
,則P-ABC的體積V的取值范圍是_____________。
查看答案和解析>>