15.將函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),再將所得圖象向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)的單調(diào)遞增區(qū)間為(  )
A.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ](k∈Z)D.[-$\frac{5π}{6}$+4kπ,$\frac{7π}{6}$+4kπ](k∈Z)

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的單調(diào)性求得g(x)的單調(diào)遞增區(qū)間.

解答 解:將函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),可得y=sin2x(x∈R)的圖象;
再將所得圖象向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=g(x)=sin2(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{3}$)的圖象.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,要在山坡上A、B兩處測量與地面垂直的鐵塔CD的高,由A、B兩處測得塔頂C的仰角分別為60°和45°,AB長為40m,斜坡與水平面成30°角,則鐵塔CD的高為$\frac{40\sqrt{3}}{3}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC的周長為10,且A(-2,0),B(2,0),則C點的軌跡方程是( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0)D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=x2-4x+5-2lnx的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列類比推理:
①已知a,b∈R,若a-b=0,則a=b,類比得已知z1,z2∈C,若z1-z2=0,則z1=z2;
②已知a,b∈R,若a-b>0,則a>b,類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
③由實數(shù)絕對值的性質(zhì)|x|2=x2類比得復(fù)數(shù)z的性質(zhì)|z|2=z2;
其中推理結(jié)論正確的是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點,AB=2$\sqrt{2}$,AA1=AC=CB=2.
(Ⅰ)證明:CD⊥平面AA1B1B;
(Ⅱ)求三棱錐V${\;}_{A-{A}_{1}DC}$的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

過點作直線交橢圓兩點,若點恰為線段的中點,則直線的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的極坐標(biāo)方程是$ρsin(θ-\frac{π}{6})=\frac{3}{2}$.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=t+\frac{1}{t}\\ y=t-\frac{1}{t}\end{array}\right.$(t為參數(shù)),直線l和曲線C相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.分解因式:(x4+x2-1)2+(x4+x2-1)-2.

查看答案和解析>>

同步練習(xí)冊答案