19.把7個(gè)字符1,1,1,A,A,α,β排成一排,要求三個(gè)“1”兩兩不相鄰,且兩個(gè)“A“也不相鄰,則這樣的排法共有( 。
A.12種B.30種C.96種D.144種

分析 先求出兩個(gè)“A“沒有限制的排列,再排除若A,A相鄰時(shí)的排列,問題得以解決.

解答 解:先排列A,A,α,β,若A,B不相鄰,有A22C32=6種,若A,B相鄰,有A33=6種,共有6+6=12種,
從所形成了5個(gè)空中選3個(gè)插入1,1,1,共有12C53=120,
若A,A相鄰時(shí),從所形成了4個(gè)空中選3個(gè)插入1,1,1,共有6C43=24,
故三個(gè)“1”兩兩不相鄰,且兩個(gè)“A“也不相鄰,則這樣的排法共有120-24=96種,
故選:C.

點(diǎn)評 本題考查了排列組合問題,相鄰問題用捆綁而不相鄰問題用插空,正難則反,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知n∈N*,從集合{1,2,3,…,n}中選出k(k∈N,k≥2)個(gè)數(shù)j1,j2,…,jk,使之同時(shí)滿足下面兩個(gè)條件:①1≤j1<j2<…jk≤n; ②ji+1-ji≥m(i=1,2,…,k-1),則稱數(shù)組(j1,j2,…jk)為從n個(gè)元素中選出k個(gè)元素且限距為m的組合,其組合數(shù)記為$C_n^{({k,m})}$.例如根據(jù)集合{1,2,3}可得$C_3^{({2,1})}=3$.給定集合{1,2,3,4,5,6,7},可得$C_7^{({3,2})}$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)點(diǎn) P在曲線y=e2x上,點(diǎn)Q在曲線y=$\frac{1}{2}$lnx上,則|PQ|的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$(1-ln2)B.$\sqrt{2}$(1-ln2)C.$\sqrt{2}$(1+ln2)D.$\frac{{\sqrt{2}}}{2}$(1+ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖由曲線y=x2+2x與y=2x+1所圍成的陰影部分的面積是( 。
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展開式中各項(xiàng)的系數(shù)之和為64.
(Ⅰ)求n的值.
(Ⅱ)求展開式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)S兩顆質(zhì)地均勻的骰子,在已知它們的點(diǎn)數(shù)不同的條件下,有一顆是6點(diǎn)的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x3-ax-1,若f(x)在(-1,1)在單調(diào)遞減,則a的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{32}{3}$B.8C.12D.$\frac{40}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知cosα=$\frac{12}{13}$,α∈(${\frac{3}{2}$π,2π),則cos(α-$\frac{π}{4}}$)的值為( 。
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

同步練習(xí)冊答案