【題目】有名學生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計算結果.
(1)甲不在兩端;
(2)甲、乙相鄰;
(3)甲、乙、丙三人兩兩不得相鄰;
(4)甲不在排頭,乙不在排尾。
【答案】(1)30240(2)10080(3)14400(4)30960
【解析】
(1)先把甲安排到中間6個位置的一個,再對剩下位置全排列;
(2)把甲乙兩人捆綁在一起看作一個復合元素,再和另外6人全排列;
(3)把甲乙丙3人插入到另外5人排列后所形成的6個空中的三個空,結合公式求解;
(4)可采用間接法得到;
(1)假設8個人對應8個空位,甲不站兩端,有6個位置可選,則其他7個人對應7個位置,故有:種情況
(2)把甲乙兩人捆綁在一起看作一個復合元素,再和另外6人全排列,故有種情況;
(3)把甲乙丙3人插入到另外5人排列后所形成的6個空中的三個空,故有種情況;
(4)利用間接法,用總的情況數(shù)減去甲在排頭、乙在排尾的情況數(shù),再加上甲在排頭同時乙在排尾的情況,故有種情況
科目:高中數(shù)學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣a|+3x,其中a>0.
(1)當a=1時,求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,,E、F、H分別為AP、AB、AC的中點,PF交BE于點M,CF交BH于點N,,.
求證:平面BEH;
求證:;
求直線PA與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著計算機的出現(xiàn),圖標被賦予了新的含義,又有了新的用武之地.在計算機應用領域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內部的白色區(qū)域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的左、右頂點分別為A,B,離心率為,點P(1,)為橢圓上一點.
(1)求橢圓C的標準方程;
(2)如圖,過點C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com