17.如圖,在四棱錐B-ACDE中,底面ACDE是直角梯形,AC垂直于AE和CD,BA⊥底面ACDE,且AB=AC=DC=1,EA=$\frac{1}{2}$.
(Ⅰ)求證:平面BCD⊥平面ABC;
(Ⅱ)求平面BDE與平面ABC所成二面角的平面角的余弦值.

分析 (Ⅰ)推導出AD⊥BC,C1C⊥AD,由此能證明平面BCD⊥平面ABC.
(Ⅱ)以A為原點,AB為x軸,AC為y軸,AE為z軸,建立空間直角坐標系,利用向量法能求出平面BDE與平面ABC所成二面角的平面角的余弦值.

解答 證明:(Ⅰ)在正三棱柱ABC-A1B1C1中,
∵D是BC的中點,∴AD⊥BC,
又CC1⊥面ABC,∴C1C⊥AD,
∴AD⊥平面BCC1B1,
∴平面BCD⊥平面ABC.
解:(Ⅱ)以A為原點,AB為x軸,AC為y軸,AE為z軸,建立空間直角坐標系,
∵AB=AC=DC=1,EA=$\frac{1}{2}$,
∴B(1,0,0),D(0,1,1),E(0,0,$\frac{1}{2}$),
$\overrightarrow{EB}$=(1,0,-$\frac{1}{2}$),$\overrightarrow{ED}$=(0,1,$\frac{1}{2}$),
設(shè)平面BDE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EB}=x-\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{ED}=y+\frac{1}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
又平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.
∴平面BDE與平面ABC所成二面角的平面角的余弦值為$\frac{\sqrt{6}}{3}$.

點評 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示程序框圖.若輸人x=2015,則輸出的y=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x+1)^{2}(-1≤x≤0)}\\{\sqrt{1-{x}^{2}}(0<x≤1)}\end{array}\right.$,則${∫}_{-1}^{1}$f(x)dx=$\frac{1}{3}$+$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.當$\sqrt{2-x}$有意義時,化簡 $\sqrt{x^2-4x+4}$-$\sqrt{x^2-6x+9}$的結(jié)果是( 。
A.2x-5B.-2x-1C.-1D.5-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$.D,E分別為線段AB,BC上的點,且CD=DE=$\sqrt{2}$,CE=2EB=2
(1)證明:DE⊥平面PCD
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.對?a,b∈R,定義運算:a⊕b=a(a-b),a?b=b(a+b).則下列判斷正確的是④⑤.
①2016⊕2017=2017;②(x+1)⊕1=1?x;③f(x)=x?(x⊕1)的零點為1,$\frac{1}{2}$;
④a⊕b=b⊕a的必要不充分條件是a=b;⑤a?b=b?a的充要條件是a⊕b=b⊕a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知n∈N*,從集合{1,2,3,…,n}中選出k(k∈N,k≥2)個數(shù)j1,j2,…,jk,使之同時滿足下面兩個條件:①1≤j1<j2<…jk≤n; ②ji+1-ji≥m(i=1,2,…,k-1),則稱數(shù)組(j1,j2,…jk)為從n個元素中選出k個元素且限距為m的組合,其組合數(shù)記為$C_n^{({k,m})}$.例如根據(jù)集合{1,2,3}可得$C_3^{({2,1})}=3$.給定集合{1,2,3,4,5,6,7},可得$C_7^{({3,2})}$=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.y=x+$\sqrt{9-{x}^{2}}$的值域為[-3,3$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖由曲線y=x2+2x與y=2x+1所圍成的陰影部分的面積是( 。
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

同步練習冊答案