【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在mx+ny+2=0上,其中mn>0,則 的最小值為

【答案】4
【解析】解:∵函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,

∴x+3=1,x=﹣2,y=﹣1.即A(﹣2,﹣1).

∵點(diǎn)A在mx+ny+2=0上,

∴﹣2m﹣n+2=0,即2m+n=2,又mn>0,

∴m>0,n>0,

= )(2m+n)= [2+ + +2]≥ (4+4)=4(當(dāng)且僅當(dāng)n=2m=1,即m ,n=1時(shí)取“=”)

故答案為:4.

由題意可得A(﹣2,﹣1),將A點(diǎn)的坐標(biāo)代入mx+ny+2=0,利用基本不等式即可求得 的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂(lè)園的摩天輪最高點(diǎn)距離地面108米,直徑長(zhǎng)是98米,均速旋轉(zhuǎn)一圈需要18分鐘.如果某人從摩天輪的最低點(diǎn)處登上摩天輪并開(kāi)始計(jì)時(shí),那么:

(1)當(dāng)此人第四次距離地面米時(shí)用了多少分鐘?

(2)當(dāng)此人距離地面不低于米時(shí)可以看到游樂(lè)園的全貌,求摩天輪旋轉(zhuǎn)一圈中有多少分鐘可以看到游樂(lè)園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的圖象和直線無(wú)交點(diǎn),給出下列結(jié)論

①方程一定沒(méi)有實(shí)數(shù)根;

②若,則必存在實(shí)數(shù)使;

③若,則不等式對(duì)一切實(shí)數(shù)都成立

④函數(shù)的圖象與直線也一定沒(méi)有交點(diǎn)

其中正確的結(jié)論個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在校運(yùn)動(dòng)會(huì)上,甲、乙、丙三位同學(xué)每人均從跳遠(yuǎn),跳高,鉛球,標(biāo)槍四個(gè)項(xiàng)目中隨機(jī)選一項(xiàng)參加比賽,假設(shè)三人選項(xiàng)目時(shí)互不影響,且每人選每一個(gè)項(xiàng)目時(shí)都是等可能的
(1)求僅有兩人所選項(xiàng)目相同的概率;
(2)設(shè)X為甲、乙、丙三位同學(xué)中選跳遠(yuǎn)項(xiàng)目的人數(shù),求X的分布列和數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)直線的交點(diǎn).

(1)點(diǎn)到直線的距離為3,求直線的方程;

(2)求點(diǎn)到直線的距離的最大值,并求距離最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)判斷函數(shù)的奇偶性,并予以證明;

2當(dāng)時(shí)求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的邊上的高所在直線方程分別為, 頂點(diǎn),邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點(diǎn)E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

同步練習(xí)冊(cè)答案