【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最省?

【答案】
(1)解:∵AP+AQ=200,

∴S= =2500

當且僅當x=y=100時取“=”.

∴當x=y=100時,可使得三角形地塊APQ的面積最大


(2)解:設AP=x,AQ=y,則1x150+1.5y100=30000,

化為:x+y=200≥2 ,可得xy≤10000.

∴PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy≥30000.

當且僅當x=y=100時取“=”.

即PQ≥100

∴當且僅當x=y=100時,可使PQ取得最小值,即使用竹籬笆用料最省


【解析】(1)AP+AQ=200,可得S= .(2)設AP=x,AQ=y,可得1x150+1.5y100=30000,化為:x+y=200≥2 ,可得xy≤10000.

可得PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy,即可得出PQ的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣mx﹣m在(﹣1,1]內有且僅有兩個不同的零點,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半圓AOB是某市休閑廣場的平面示意圖,半徑OA的長為10,管理部門在A,B兩處各安裝好一個光源,其相應的光強度分別為4和9,根據(jù)光學原理,地面上某處照度y與光強度I成正比,與光源距離x的平方成反比,即y= (k為比例系數(shù)),經(jīng)測量,在弧AB的中心C處的照度為130.(C處的照度為A,B兩處光源的照度之和)
(1)求比例系數(shù)k的值;
(2)現(xiàn)在管理部門計劃在半圓弧AB上,照度最小處增設一個光源P,試問新增光源P安裝在什么位置?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過定點A,若點A在mx+ny+2=0上,其中mn>0,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且偶函數(shù)的定義域為,且當時, .若存在實數(shù),使得成立,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某港口水的深度是時間,單位: 的函數(shù),記作.下面是某日水深的數(shù)據(jù):

經(jīng)長期觀察, 的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時,船底離海底的距離為以上時認為是安全的(船舶停靠時,船底只需不碰海底即可).

(1)求滿足的函數(shù)關系式;

(2)某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內安全進出港,請問它同一天內最多能在港內停留多少小時?(忽略進出港所需的時間).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,四邊形是邊長為的正方形,平面平面,若, 分別是的中點.

(1)求證: 平面;

(2)求證:平面平面;

(3)求幾何體的體和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx.
(1)設h(x)為偶函數(shù),當x<0時,h(x)=f(﹣x)+2x,求曲線y=h(x)在點(1,﹣2)處的切線方程;
(2)設g(x)=f(x)﹣mx,求函數(shù)g(x)的極值;
(3)若存在x0>1,當x∈(1,x0)時,恒有f(x)> 成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于四面體,有以下命題:

1)若則過向底面作垂線,垂足為底面的外心;

2)若, ,則過向底面作垂線,垂足為底面的內心;

3)四面體的四個面中,最多有四個直角三角形;

4若四面體6條棱長都為1,則它的內切球的表面積為.

其中正確的命題是__________

查看答案和解析>>

同步練習冊答案