【題目】已知A為焦距為的橢圓E:(a>b>0)的右頂點,點P(0,),直線PA交橢圓E于點B,.
(1)求橢圓E的方程;
(2)設(shè)過點P且斜率為的直線與橢圓E交于M、N兩點(M在P、N之間),若四邊形MNAB的面積是△PMB面積的5倍.求直線的斜率.
【答案】(1)+=1;(2)k=±
【解析】
(1)先根據(jù)條件得B點坐標(biāo),代入橢圓方程,再與焦距聯(lián)立方程組解得(2)根據(jù)面積關(guān)系得,聯(lián)立直線方程與橢圓方程,利用韋達定理建立等量關(guān)系解得斜率.
(1)由題意,得焦距2c=2,∴2c=2,c=,
∵,所以點B為線段AP的中點,
因為點P(0,2),A(a,0),
∴B(,),
因為點B(,)在橢圓E上,∴+=1,
即b2=4,2=b2+c2=9,
∴橢圓E的方程為+=1.
(2)由題可得S△PAN=6S△PBM,即|PA||PN|sin∠APN=6×|PB||PM|sin∠BPM,
∴|PN|=3||,∴,設(shè)M(x1,y1),N(x2,y2),
于是=(x1,y1-2),=(x2,y2-2),
∴3(x1,y1-2)=(x2,y2-2),
∴x2=3 x1,即=3,于是+=,即=,①,
聯(lián)立,消去y,整理得(9k2+4)x2+36kx+72=0,
由△=(36k)2-4×(9k2+4)×72>0,解得k2>,
∴x1+x2=-,x1x2=,
代入①可解得k2=,滿足k2>,∴k=±,即直線l的斜率k=±.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里有大小相同的3個紅球和3個黑球,從盒子里隨機取球,取到每個球的可能性是相同的,設(shè)取到一個紅球得1分,取到一個黑球得0分.
(Ⅰ)若從盒子里一次隨機取出了3個球,求得2分的概率;
(Ⅱ)著從盒子里每次摸出一個球,看清顏色后放回,連續(xù)摸3次,求得分ξ的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點是曲線上的動點,點在的延長線上,且,點的軌跡為.
(1)求直線及曲線的極坐標(biāo)方程;
(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點,且平面.
(1)求證:為的中點;
(2)若為的中點,連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社團組織活動豐富,學(xué)生會為了解同學(xué)對社團活動的滿意程度,隨機選取了100位同學(xué)進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年入冬以來,我市天氣反復(fù).在下圖中統(tǒng)計了我市上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是( )
A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低
C.今年8-12號氣溫持續(xù)上升D.今年8號氣溫最低
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com