【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)當(dāng)時,記的最小值為,證明:.
【答案】(1)當(dāng)時,在單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在單調(diào)遞增;(2)證明見解析.
【解析】
(1)對a分兩種情況討論,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;(2)由(1)知,
, 再構(gòu)造函數(shù),,求得取得最大值小于即得證.
(1)因為的定義域為,
又,
所以當(dāng)時,,在單調(diào)遞增.
當(dāng)時,若時,,在單調(diào)遞減;
若時,,在單調(diào)遞增.
綜上,當(dāng)時,在單調(diào)遞增;
當(dāng)時,在 上單調(diào)遞減,在單調(diào)遞增.
(2)當(dāng)時,由(1)知,
,
令,,則,
令,,則,
所以在單調(diào)遞減,
又,,所以存在,
使得,且,
所以當(dāng)時,,單調(diào)遞增;
當(dāng)時,,單調(diào)遞減;
所以當(dāng)時,取得最大值,
因為
,
令,,
則在單調(diào)遞減,
所以,所以,
因此當(dāng)時,,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,對于任一給定的四面體,找出依次排列的四個相互平行的平面,,,,使得,且其中每相鄰兩個平面間的距離都相等;
(2)給定依次排列的四個相互平行的平面,,,,其中每相鄰兩個平面間的距離為1,若一個正四面體的四個頂點滿足:,求該正四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A為焦距為的橢圓E:(a>b>0)的右頂點,點P(0,),直線PA交橢圓E于點B,.
(1)求橢圓E的方程;
(2)設(shè)過點P且斜率為的直線與橢圓E交于M、N兩點(M在P、N之間),若四邊形MNAB的面積是△PMB面積的5倍.求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為1的正三角形,,.
(1)求證:;
(2)點是棱的中點,點P在底面內(nèi)的射影為點,證明:平面;
(3)求直線和平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①越小,X與Y有關(guān)聯(lián)的可信度越小;②若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的值越接近于1;③“若,則類比推出,“若,則;④命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是使用了“三段論”,推理形式錯誤.其中說法正確的有( )個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若a=1,求f(x)的極值;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線,為過焦點的弦,過,分別作拋物線的切線,兩切線交于點,設(shè),,,則下列結(jié)論正確的是( ).
A.若的斜率為1,則
B.若的斜率為1,則
C.點恒在平行于軸的直線上
D.的值隨著斜率的變化而變化
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com